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Abstract

In recent years, the use of more and more technology in education has been a trend. The shift of traditional 
learning procedures into more online and tech-ish approaches has contributed to a context that can favor 
integrating Artificial-Intelligence-based or algorithm-based assessment of learning. Even more, with the current 
acceleration because of the COVID-19 pandemic, more and more learning processes are becoming online and 
are incorporating technologies related to automatize assessment or help instructors in the process. While 
we are in an initial stage of that integration, it is the moment to reflect on the students' perceptions of being 
assessed by a non-conscious software entity like a machine learning model or any other artificial intelligence 
application. As a result of the paper, we present a TAM-based model and a ready-to-use instrument based 
on five aspects concerning understanding technology adoption like the AI-based assessment on education. 
These aspects are perceived usefulness, perceived ease of use, attitude towards use, behavioral intention, and 
actual use. The paper's outcomes can be relevant to the research community since there is a lack of this kind 
of proposal in the literature.
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I. Introduction

WILL be your next teacher a neural network model? What would 
be your feelings related to being evaluated by a non-human 

entity in such a human process like learning? In the last years, we 
have been experiencing a rising in integrating Artificial Intelligence 
(AI) applications in our daily lives [1]-[3].

People are beginning to be aware that they may interact with AI 
applications when interacting with mobile devices, computers, or in 
general, in technology-surrounded environments. What is less known, 
or the people are less aware, is that AI applications surround us even in 
more traditional contexts, even in those that typically were pure human-
based and did not involve any intelligent software stakeholder [4]-[6]. 
Many previously pure human-based contexts are now intermediated 
by intelligent systems or capable decision-making software that affect 
how we experience our lives or interact with other people.

As commented in the literature [7], [8], one of the fields in which we 
can observe the introduction of more sophisticated software programs 
is education. As [7] outlines, in recent years, we have experienced the 
inclusion of virtual teaching assistants in classrooms (for example, 
Jill Watson, deployed at the Georgia Institute of Technology), 

technology to study and improve students’ learning performance, 
AR/VR technologies, teaching robots, etc. The trend of including 
more technology in different educational environments is even more 
significant today, during the current global COVID-19 pandemic. 
Since the beginning of the pandemic, many people have used virtual 
learning and teaching and different approaches to improve those 
online experiences. By using video-meeting resources and online 
educational platforms, many teachers have solved part of the issue; 
they have given their lectures and provided learning materials.

However, what happens with other fundamental aspects of the 
learning processes like the assessment? Are there intelligent systems 
being used to evaluate students learning? Are the students OK 
with being potentially evaluated by software artifacts based on AI 
algorithms or any other similar approach? According to our previous 
research [8]-[10], there is a lack of studies on this topic, especially in 
studying acceptance among students and teachers.

Based on the literature gap detected and related to our previous 
research, this paper presents a novel TAM-based tool to measure 
students’ acceptance of being assessed by intelligent software artifacts 
(AI-based ones). The purpose of this tool is to serve as the foundation 
to develop further empiric studies that could enrich our understanding 
of how people (and students) interact with intelligent software, in 
particular in contexts like education, and even more when the AI-
based software is in a power position like in the role of an evaluator.

The paper includes the following sections: Section I introduces 
the problem and some relevant research. Section II presents the 
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theoretical background of the paper. Section III describes the TAM-
based model we propose to study the AI-based assessment acceptance 
among students, while section IV presents the specific instrument we 
propose to research that question. Section V discusses the outcomes 
of the paper and its future implications. Finally, Section VI presents 
some conclusions.

II. Theoretical Background 

The possibilities entailed by using AI-based systems in the 
educational field constitute a topic of growing attention among 
the scientific community, based on the fast-development of these 
technologies and the vivid social debate regarding the risks ethical 
considerations on the use of AIs [8].

This way, along the last decade, we can observe an increasing 
number of initiatives that explore the different uses of these 
technologies to support the teaching-learning process that can be 
classified into three groups: use of AIs to analyze human behavior, use 
of AIs as didactic tools and use of AIs as assessment tools.  

In the first group, we can find investigations that use AIs as tools 
to perform complex statistical analysis in data-driven approaches 
with large groups of data to detect behavioral patterns of teachers 
and students susceptible to intervention. The initiatives in this group 
are mainly focused on students’ elements such as their learning 
strategies [11], [12], although we can find some examples of its use on 
investigations with teachers [13].

On the other hand, the second group is focused on the didactic 
potential of AIs and examines its application in the creation of virtual 
persons to help students during their learning [14], the development of 
virtual learning environments [15] or even the use of social robots [16].

Finally, the third group is interested in the possibilities derived from 
using AI-based systems on the students’ assessment, which constitutes 
one of the students’ primary concerns and a key competence of the 
teachers [17].

The study of the use of AIs for evaluation is still a very young field in 
an early stage of development in which most research is concentrated 
in the last decade, mainly in North America[8].

Even so, we can find exciting initiatives in this area developed in 
the context of higher education. These investigations can be grouped 
into three categories: 

• Use of AIs for the assessment of behaviors: These 
investigations are focused on the analysis of student behavior at 
different circumstances of the teaching-learning process.

This way, we can find initiatives that evaluate through AIs the 
interactions of students in online courses to predict their academic 
performance [18], [19] or their behavior during activities to 
personalize their learning experience or develop adaptive 
processes [20], [21].

• Use of AIs for the assessment of feelings: Experiences that 
apply AI-based tools to determine the emotions experienced by 
students during the development of different educational processes

The most common application of these technologies is the analysis 
of students’ satisfaction in online courses [22], [23], although we 
can find research that uses the analysis of feelings with other 
objectives such as predicting the success of MOOCs [24].

• Use of AIs for the assessment of academic performance: 
In this group of investigations, the most numerous of the three, 
the AI-based tools are used to automate the correction process of 
both exams (multiple choice or short answers) [25], [26] and other 
types of student productions [27].

The application of these tools is intended to lighten teachers’ 
workload and improve the fairness of their grading [28].

Despite this growing presence of AIs in the educational field and 
the interest among the scientific community and organizations in 
developing this practice, the study of the adoption of these technologies 
among the educational agents constitutes an underexplored research 
area. 

However, we can find examples of research focused on this topic in 
other fields, such as the development of automated vehicles, banking, 
or e-commerce [29]-[31] that indicate the critical role played by 
factors such as perceived usefulness, confidence, or social pressure in 
the decision to use AI-based tools.

The educational agents’ willingness is a fundamental element 
to guarantee the success of any technological innovation process. 
Therefore, the development of adoption models to analyze the factors 
that condition such adoption can provide essential information for 
developing of new initiatives in this field.

III. Model Development

As a starting point for developing the model, we reference the 
technology acceptance model (TAM) proposed by Davis [32]. This 
theory understands the process of adoption of a specific technology 
based on five factors:

• Perceived usefulness (PU): The subject’s perception of the effect 
that the tool’s use has on their work performance.

• Perceived ease of use (PEU): The person’s assessment of the 
degree of effort required to use the system.

• Attitude towards use (AT): The feelings, opinions, and favorable 
or unfavorable assessments about the use of technology. 

• Behavioral intention (BI): The level of willingness of the user 
to use the tool.

• Actual use (AU): The frequency of use of the technology by the 
subject.

PU, and PEU are the main antecedents of the model. In Davis’s 
proposal, these two factors condition the attitude towards the user’s 
use, which in turn, conditions BI which would be the factor leading to 
the actual use of technology (Fig.1).

PU

AT AUBI

PEU

Fig. 1.  TAM model [32].

TAM’s main advantages are its parsimony and flexibility, which 
allows the application of the model to a wide variety of contexts and 
technologies [33].

In the educational field, enhanced by the fast technological 
development, TAM based models expanded with constructs from other 
theories have been widely applied to analyze the adoption process of 
technologies such as mobile devices [34], LMS [35], or AR [36] both 
between students [37] and teachers [38].

However, since the use of AI for the assessment is still in a very 
initial stage of development, the development of TAM-based models 
for the analysis of these technologies’ adoption process among the 
educational agents constitutes an unexplored line of research. 
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Following this line of development, this model includes the six 
hypotheses proposed by Davis [32] applied to the object of study:

H1 PU is positively related to the intention to participate in the 
AI-driven assessment activities of the students.

H2 PU is positively related to the attitude towards the participation 
in AI-driven assessment activities of the students.

H3 PEU is positively related to the attitude towards the participation 
in AI-driven assessment activities of the students.

H4 PEU is positively related to the students’ usefulness in the 
implementation of AI technologies for their assessment.

H5 AU is positively related to the intention to participate in AI-
driven assessment activities of the students.

H6 BI is positively related to the participation in the AI-driven 
assessment activities of the students. 

One of the most common practices during the process of adapting 
TAM to a new field of technology is the expansion of the original 
proposal and the inclusion of constructs from other theories pertinent 
for the object of study, with the intention to increase the percentage of 
variance explained by the model [39].

Following this line of reasoning, we decided to expand TAM with 
three additional constructs to measure the influence of environmental 
pressure, the feeling of distrust towards AIs, and the natural opposition 
to the individual’s changes.

Firstly, to measure the effect of the individual’s perception of the 
social discourse on the use of AIs for evaluation on their adoption of 
this technology, this model includes subjective norm (SN).

This construct refers to the perceived social pressure towards the 
performance of a particular behavior, the belief that a substantial 
group or individual approves or disapproves a given action [40], in 
this case, the use of AIs in the evaluation of the students.

Since its formulation in the theory of reasoned action (TRA) [41] 
and the theory of planned behavior (TPB) [42] this construct has been 
widely incorporated in the design of technology adoption models such 
as TAM2 [43], TAM3 [44] and expanded TAM models [45].

In the educational field, we can find a wide variety of studies that 
incorporate SN to measure the social influence on the technology 
adoption of the students [46] confirming its effect on the behavior of 
the subjects through its influence on other TAM constructs such us 
PU and BI.

Given the heated debate surrounding the use of AIs in education, 
and the lack of information and experience of the students regarding 
this practice, SN should have an important influence on both, the 
perception of the individual of AIs and their disposition towards its use.

Therefore, the model includes the following two hypotheses for SN 
based on the proposals by Venkatesh and Davis [43] and Venkatesh 
and Bala  [44] :

H7 SN is positively related to the intention to participate in AI-
driven assessment activities of the students. 

H8 SN is positively related to the usefulness perceived by the 
students in the implementation of AI technologies for their 
assessment.

One of the main problems when dealing with the implementation 
of the AI-based systems is the lack of user confidence in both the 
handling of the user’s personal information and the resolution of 
complex problems [47].

This issue has been acquiring greater importance due to the 
proliferation and development of these systems and the interest of 
organizations and administrations in their incorporation [48] .

Trust is a variable often included in technology adoption studies, 
especially in contexts such as online banking [49], e-commerce [50] or 
eGovernment [51] defined as the willingness of the individual to rely 
on the other part [52], establishing its relationship with other variables 
from TAM like PU or BI.

In the educational field, the effect of this dimension is still little 
explored, although we can find some examples of its application in 
research on the adoption of technologies such as cloud computing 
[53].

In this case, trust (TR) plays a special role since, although they 
may be perceived as agents, AIs have no conscience or morals [54], 
thus in the context of this study, users will perceive AIs to be useful 
and be more inclined to be evaluated by them if they trust both the 
teachers that use them and the AIs themselves. In consequence, for 
this research, we propose the following hypotheses based on the 
works of [49]- [51]:

H9 TR is positively related to the intention to participate in the AI-
driven assessment activities of the students.

H10 TR is positively related to the attitude towards the participation 
in AI-driven assessment activities of the students.

H11 TR is positively related to the usefulness perceived by the 
students in the implementation of AI technologies for their 
assessment.

Incorporating the use of AI in education implies a series of changes 
in the teaching-learning process, including the attribution of one 
of the most important tasks of teachers, as is the assessment, to a 
technological tool. 

This change can cause a feeling of anxiety among the students in 
the face of the expectation of not being evaluated by a human being, 
which may generate a negative predisposition towards participation 
in educational activities with this modality of evaluation. In order to 
measure this effect, the model includes the construct of resistance to 
change (RC).

 RC was born in the field of organizational sciences to analyze the 
organizational elements that generate an attitude of resistance in the 
individual, although this concept was also applied to study factors 
related to the individual [55], [56].

In this proposal, RC is modeled after the construct developed by Guo 
et al [57] and defined as the opposition of the individual to the rupture 
of the status quo produced by the use of AIs for their evaluation. This 
way, RC would be an inhibiting factor that will negatively affect the 
students’ technology adoption [58].

In the educational field, RC is recently being incorporated in 
expanded TAM models to study students’ adoption of ICTs with 
promising results [59] supporting is the effect in the three main 
dimensions of TAM; namely, PU, AT, and BI. Considering the 
importance of the changes that the implementation of this technology 
entails for an area that constitutes one of the students’ main concerns, 
RC is expected to affect the aforementioned three constructs. 
Therefore, the model is completed (Fig. 2) with the following three 
hypotheses:

H12 RC is positively related to the intention to participate in AI-
driven assessment activities of the students.

H13 RC is positively related to the attitude towards the participation 
in the AI-driven assessment activities of the students.

H14 RC is positively related to the usefulness perceived by the 
students in the implementation of AI technologies for their 
assessment.
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Fig. 2.  Research model.

IV. Instrument

The instrument proposed to measure the seven constructs of our 
model is divided into three sections. Firstly, taking into account that 
the use of these technologies is still in the early stages of development, 
it is very likely that students will not have a clear idea of what 
constitutes the use of AIs for assessment, the instrument to perform 
the data gathering process includes a brief introduction text explaining 
the fundamentals of this topic.   

The second section is dedicated to gathering the participants’ 
identification data regarding four variables that may affect the 
adoption process, namely, gender, age, experience with AIs, and the 
branch of knowledge.

The third section is composed of 30 Likert-type items adapted from 
previous works to measure the object of study. Firstly, the items to 
assess the constructs from the original TAM were adapted from the 
proposals by Davis [32] and Venkatesh and Bala [44] (table I):

TABLE I. Items to Measure the Tam Constructs

Item Text

AU1 Using AIs to support the assessment of the students is a good idea.

AU2
Using AI-based tools to assess the academic achievement of the 

students is a smart choice.

AU3 I like the idea of using AIs for the assessment of the students.

AU4
I have positive feelings about implementing AI-based tools for the 

assessment of the students.

BI1 I would participate in AI-based assessment processes.

BI2 I plan to participate in AI-based assessment processes often.

BI3 I hope to participate in AI-based assessment processes in the future.

PEU1 My interaction with AI-based tools is clear and understandable.

PEU2 I find it easy to get AIs to do what I want them to do.

PEU3 I find AI-based systems easy to use.

PEU4 I can easily learn how to use AI-based tools for my self-assessment.

PU1 Using AI-based tools for my assessment allows me to learn effectively.

PU2
Using AI-based tools for my assessment improves my academic 

productivity.

PU3 Using AI-based tools increases my assessment opportunities.

PU4 Incorporating AI-based technologies for my assessment is useful.

Secondly, to measure the new constructs added to the model, we 
took as reference different expanded TAM models (Table II). 

TABLE II.  Tems to Measure the Expanded Constructs

Item Text

SN1
People who are important to me think AIs should be used to assess 

the students.

SN2
My classmates think teachers should use AIs to assess their 

students.

SN3
In the universities, teachers are expected to use AI-based tools to 

assess the academic achievement of the students.

SN4
People who influence my behavior think I should participate in 

AI-based assessment processes often.

SN5
People who are important to me think I should participate in AI-

based assessment processes often.

RC1 I would like AIs to change the way assessment is carried out.

RC2
I want AIs to change teacher-student interaction during the 

assessment.

RC3 I would like AIs to change the way I am assessed.

RC4
I agree with the changes entailed by the use of AI for the 

assessment.

TR1 AIs are trustworthy.

TR2 I tend to trust AIs.

TR3 I trust AIs even though I have little knowledge of them.

TR4 AIs can provide an accurate assessment of the students.

TR5 AIs can provide a reliable assessment of the students.

TR6 AIs can provide a convenient assessment of the students.

In the case of SN, the five items for this dimension were adapted 
from the works of Venkatesh and Bala [44] and Taylor and Todd [60], 
[61] to measure both the general sources of SN and the specific sources 
related to the educational environment of the student.

The RC items were developed based on the proposals by Guo et al. 
[57] and Sánchez-Prieto et al. [59] that refer both to elements related 
to the teaching-learning process and with the interaction between 
teacher and student.

Finally, the items to measure the trust of the students in AI and 
their capability to assess them were adapted from the versions of 
Gefen et al. [52].

V. Discussion and Conclusion

As we have shown, AI-based evaluation and the integration of 
algorithmic solutions in the learning process have been a trend 
in recent years. It is increasing its relevancy at a rapid pace. The 
shift of traditional learning procedures into more online and tech-
ish approaches contributes to algorithmic systems’ implantation. 
Even more, with the current acceleration because of the COVID-19 
pandemic, more and more learning processes are becoming online 
and are incorporating technologies like those described relative to 
assessment. The opportunity of going online is a powerful temptation 
in the current situation or, in some cases, is the only way to continue 
learning. Related to that, the use of new assessment technologies 
based on AI or any other algorithmic approaches correlates perfectly 
with that trend of going online. Since most of the interaction is online 
and produces a digital footprint, we can think that we can use, easily, 
automated ways of evaluating the interaction. That is partially true. 
It is right in the sense that many digital footprints can be analyzed 
automatically. We can indeed make simple analytics in almost any 
digital data. We can probably even introduce improvements in the 
education process that can favor students and teachers, fostering their 
performance, opportunities, and engagement [62]. What is not exact is 
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that we can introduce a relevant change like AI-based or algorithmic-
based assessment of learning without paying much attention to some 
different aspects.  Before going forward, we must evaluate the real 
need to use this kind of procedure, the level of detail required for the 
analysis, the interaction of humans in the process, the ethical issues 
related, or, as underlies in this paper, the perception of being evaluated 
(or helped in evaluation) by a non-conscious software entity that 
enables decisions or takes them in our behalf or while considering our 
human performance.

Furthermore, considering most of the existing algorithms and 
systems cannot grasp the human processes’ entropy and their multiple 
dimensions and subtle details completely, leading to harmful results 
for the humans involved. For these reasons, there are needed studies 
that research the human perceptions of these procedures driven by 
algorithms. 

This article presents a theoretical model of technology adoption 
that aims to explain students’ adoption using AI-based tools for their 
assessment. The model is based on TAM and expanded with the most 
relevant constructs in adopting this technology: perceived usefulness, 
perceived ease of use, attitude towards the use, behavioral intention, 
trust, resistance to change, and subjective norm.

With the inclusion of these variables, the model proposed can address 
both the effect of the perceived advantages and disadvantages and the 
factors related to the trust issues and the reluctance of the subjects to 
be assessed by these tools. The resulting model includes 14 relational 
assumptions that determine the effects of the different variables.

To measure these constructs and aim to guarantee the proposal’s 
parsimony, we have designed a questionnaire composed of 30 Likert-
type items adapted from previous theories, which allows for the 
empirical testing of the model and its expansion and modification.

This way, this model constitutes a first step in the study of the 
adoption of AI-based assessment among students, which opens the 
door to further investigations. Firstly, although the items are adapted 
from previous investigations and have been exhaustively tested in 
other adoption models with good results, the instrument could be 
subjected to a content validation process to confirm the items’ quality. 
In this line, a pilot study is currently in development to test the 
proposal’s statistical validity in an empirical setting.

Finally, this model is also susceptible to further modification, 
including its expansion with additional constructs from other theories 
that may increase the understanding of the adoption process of these 
technologies. 
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