
International Journal of Interactive Multimedia and Artificial Intelligence, Vol. 6, Nº 2

- 56 -- 56 -

I. Introduction

THE semantic technologies address the problem of various
heterogeneous devices, communication protocols, and data formats

of the generated data in the Internet of Things. Annotation of IoT sensor
data is the substance of IoT semantics [1]. The future generation of IoT
not only deals with the physical sensor devices but also the meanings
they carry with virtual representation of smart data. On an average,
every day around 3.2 quintillion bytes of data are generated on the
Internet. The CISCO predictions state that more than 60 billion devices
will be connected to the internet by 2025, as a result zetta bytes of sensor
data will be generated continuously and exponentially. The IoT sensors
generated raw data is stored in the data repositories and it supports to
heterogeneous smart city applications. Therefore, applying the raw data
into applications may result in structural data with pre-notified format,
date, source, affiliation, unit, and encryption. The next level of data is
perception data that contains the multi abstraction from low-level to
high-level applications to perform actionable and predictive data for the
final evaluation. For understanding the perception data more concisely,
the structural information is needed. Without structural information,
the data may mislead to false results and may fail to integrate the real-
time application data [2]. The perception data is extracted from the

structured data that is more compressive and occupies less space than
the raw data. Machine Learning (ML) clustering techniques are used for
performing analysis on the perception data and automatic generation of
semantic annotations. Moreover, in IoT, the real-time streaming data
plays a major role to perform cluster analysis. The streaming data is
flowing continuously as data stream from the IoT device to the peer
network. The stream processing has been effectively analyzes the
cluster data, improve the cluster efficiency, and able to make quicker
decisions on clustered data [3]-[5].

The hierarchical clustering techniques are used for representing
logical, temporal, and spatial relations on the IoT streaming data. The
most important aspect of clustering IoT streaming data is its dynamic
and heterogeneous nature. Therefore, a novel clustering mechanism is
needed to represent the hierarchical relationships-based annotations
for the IoT streaming data [6]. In this paper, incremental hierarchical
clustering is deployed for unifying the streaming data in a hierarchical
manner. SPARQL queries are used for extracting semantic annotations
between the hierarchical clustered data. The agents will receive the raw
data streams as input data from the IoT sensor devices and then perform
the classification between the data streams for generating the RDF
data patterns for the hierarchical clustering. The RDF data patterns
are combined with the pre-notified metadata of the IoT sensors for the
incremental hierarchical clustering process. At last, the hierarchical
streaming data is annotated with the automatic semantic annotations
using SPARQL queries.

Incremental Hierarchical Clustering driven Automatic
Annotations for Unifying IoT Streaming Data
Sivadi Balakrishna1*, M.Thirumaran1, Vijender Kumar Solanki2, Edward Rolando Núñez-Valdez3

1 Department of Computer Science and Engineering, Pondicherry Engineering College, Pondicherry (India)
2 Department of Computer Science and Engineering, CMR Institute of Technology, Hyderabad, TS
(India)
3 Department of Computer Science, University of Oviedo (Spain)

Received 27 September 2019 | Accepted 23 January 2020| Published 21 March 2020

Keywords

IoT Sensor Data,
Semantics, Automatic
Annotation, Incremental
Hierarchical Clustering,
Healthcare, Agent,
SPARQL.

Abstract

In the Internet of Things (IoT), Cyber-Physical Systems (CPS), and sensor technologies huge and variety of
streaming sensor data is generated. The unification of streaming sensor data is a challenging problem. Moreover,
the huge amount of raw data has implied the insufficiency of manual and semi-automatic annotation and leads to
an increase of the research of automatic semantic annotation. However, many of the existing semantic annotation
mechanisms require many joint conditions that could generate redundant processing of transitional results for
annotating the sensor data using SPARQL queries. In this paper, we present an Incremental Clustering Driven
Automatic Annotation for IoT Streaming Data (IHC-AA-IoTSD) using SPARQL to improve the annotation
efficiency. The processes and corresponding algorithms of the incremental hierarchical clustering driven
automatic annotation mechanism are presented in detail, including data classification, incremental hierarchical
clustering, querying the extracted data, semantic data annotation, and semantic data integration. The IHC-
AA-IoTSD has been implemented and experimented on three healthcare datasets and compared with leading
approaches namely- Agent-based Text Labelling and Automatic Selection (ATLAS), Fuzzy-based Automatic
Semantic Annotation Method (FBASAM), and an Ontology-based Semantic Annotation Approach (OBSAA),
yielding encouraging results with Accuracy of 86.67%, Precision of 87.36%, Recall of 85.48%, and F-score of
85.92% at 100k triple data.

* Corresponding author.
E-mail address: balakrishna.sivadi@pec.edu

DOI: 10.9781/ijimai.2020.03.001

- 57 -

Regular Issue

Semantic annotation has mainly taken from the field of text
annotation. It provides machine-readable descriptions along with labels
for URIs. Dealing with IoT semantic data is a difficult and challenging
task for researchers and developers with technical issues. To solve
this problem on providing the manual annotation and semi-automatic
annotation, one approach for providing a semantic annotation to
IoT semantic data is proposed [7]-[8]. Using manual annotation and
semi-automatic annotation cannot be applicable if the IoT sensor data
is huge in volume. It consumes more time to annotate the huge data
and unable to capture the IoT devices generated data [9]. Therefore, a
new and innovative automatic semantic annotation with more efficient
mechanisms are needed.

The main contributions of this work are listed as follows: Firstly,
build an architectural model using hierarchical clustering driven
automatic annotation for unifying IoT streaming data. Thereafter,
add semantic annotations using SPARQL queries. Then extract and
visualize the streaming data using the proposed IHC-AA-IoTSD
mechanism and SPARQL queries. Afterwards, find the performance
evaluation of the proposed model. Finally, comparison has been made
of the proposed architectural model with existing approaches.

The remainder of this paper is described as follows: section II
discuss background of the related work and the state of the art schemes.
In section III, the authors discuss the proposed mechanism Incremental
Hierarchical Clustering based Automatic Annotation for IoT Streaming
data (IHC-AA-IoTSD). Experimental Methodology and Evaluation are
described in section IV and section V respectively. Finally, section VI
concludes this work along with the future scope.

II. Background and Related Work

In this section, the related work of semantic annotations in IoT
platforms for unifying streaming data in efficient way is discussed.
Majority of the researchers has put their efforts on how to deal
with big volume and variety of data generated by IoT devices. As a
result, ontologies and standards, mapping technologies and exchange
systems, semantic annotations, data integration, interoperability,
scalability, cluster efficiency and energy-efficient issues are identified.
In semantic annotations, manual and semi-automatic annotations are
time consuming and perform the annotation process with labels and
manually. In addition, these all are dealing with web documents, text
documents, and sensor networks. While thinking of Cyber-Physical
Systems (CPS) and IoT dynamic data, it generates the big volume
of data, therefore, it requires automatic annotation for handling large
dynamic data.

Annotation is the process of adding additional information to the
existing data, which is enriched with labels, keywords, things, etc.
Semantic annotation is the term of enriching data with meanings and
descriptions. Annotation plays a major role by providing semantics
between humans and machines. These are categorized as three ways-
Manual annotation, Semi-automatic annotation, and Automatic
annotation. In manual annotation, the data is annotated manually.
Here keywords are used for annotating the additional information
with existing data. Humans with their self-imagination annotate the
keywords. Therefore, it yields the highest accuracy, but it consumes
more time to complete the entire triple data. In semi-automatic type of
annotation, some part is carried out with keywords and the rest of the
part is finished with trained pre-defined set automatically [21]. Two
steps complete this process. In the first step, the annotator can annotate
the data with keywords. In the second step, the semantic annotation
tools are used to toggle the data. Both accuracy and efficiency are
improved in this type of annotation system. Automatic annotation is
the advanced and recently used annotation system by developers and
researchers. In this, the whole process is measured by the annotation

system. Annotation tools like Gruff (https://franz.com/agraph/gruff/),
Jena (http://jena.apache.org/), and Protégé (https://protege.stanford.
edu/) are used for this approach. Based on the instructions given by
a user, the annotation tool will place corresponding predicates among
the subject and object. At last, a meaningful label and property are
assigned to it.

The existing research work on semantic annotation, majority of
researcher’s intention have been attentive on the semantic based Web
documents, and a few researches pay attention to the IoT streaming
data based automatic semantic annotation. As shown in Table I, the
authors has been associated the former semantic annotation methods
in seven aspects, such as “Automatic Annotation”, “Semi-Automatic
Annotation”, “Manual Annotation”, “Training Data Set”, “Application
Specific Domain”, “Data Type based on” and “Model/Framework/
Technology used”. In Table I, the authors has been deliberate based
seven aspect and it indicates the following:
• Supreme of the annotation methods focus on the Internet field and

are applied for Web documents.
• The existing research of semantics for Web documents primarily

pay attention towards Ontology based annotation methods.
• Majority of the existing works on semantic annotation methods

in the IoT data are manual. Furthermore, they primarily focus on
architectural models and deployable frameworks.
Nowadays, the methods compared in Table I are the most powerful

and popular mechanisms to achieve semantic data integration in
IoT platforms. The existing data models are updates with semantic
annotations on providing semantic labels to become model elements.
Kolozali et al. [23] proposed SensorSAX and SAX (Symbolic Aggregate
Approximation) methods for adaptive and non-adaptive window size
segmentation of data streams real-time processing. Their algorithms
are efficient in improving data aggregation in streaming data. However,
these are unfair while annotating the IoT dynamic data. Mazayev et al.
[24] proposed a CoRE framework for data integration and profiling of
objects, as a result, it facilitates semantic data annotation, validation
of results, and reasoning of annotated data. This framework adopted
the RESTful resources for validating the user profiling of objects with
the COAP server. However, the proposed framework is limited for
validating and annotating IoT dynamic data efficiently. Mayer et al.
[25] developed an Open Semantic Framework (OSF) for industrial IoT
applications to make the web of things into semantic web of things.
This framework is widely designed to enable the industrial things with
semantics to the IoT domains. However, the OSF is not implemented
under consideration of various industrial applications.

Shi et al. [26] concentrated on data semantization in IoT
applications. They reviewed and overviewed all architectural elements
and applications supported for IoT domain. In addition, they surveyed
on how to add semantics to the IoT dynamic data, discussed on current
research issues and challenges faced by semantic scholars. However,
they limited to perform analysis on IoT data integration techniques.
Zamil et al. [27] have proposed automatic data annotation techniques
for smart home environments by adopting temporal relations. In
addition, they incorporated HMM and Random Field models for
integrating temporal and spatial relations enhanced by detection
accuracy rate. The produced results are moderate and there is a
space for enhancement with other incremental clustering techniques.
Moutinho et al. [28] have extended the semantic annotations for
integrating XML-messages using generating translators under the
domain of arrowhead framework. These annotations are not automatic
and only domain specific. Therefore, it consumes more time and space
for annotating the IoT dynamic data.

An exhaustive and optimistic survey has been conducted under the
literature survey. Nevertheless, these all do not light the prerequisites

- 58 -

International Journal of Interactive Multimedia and Artificial Intelligence, Vol. 6, Nº 2

of the semantic scholars and users for adding automatic semantic
annotations in IoT streaming data. Therefore, in this paper, we present
IHC-AA-IoTSD mechanism using SPARQL queries to improve the
clustering based annotating process in IoT sensor streaming data.
Through a unification of machine learning and semantic technologies, the
proposed approach gives better results in terms of efficiency, reliability,
scalability and security compared to the state of the art schemes.

III. Proposed Mechanism

In this proposed research work, to achieve semantic annotations
among data samples, a Resource Description Framework (RDF)
is used to annotate the data objects in meaningful way. The authors
have analysed an incremental hierarchical clustering driven automatic
annotation architectural model based on IoT for unifying the streaming
data. For this reason, in this paper, a new and novel IHC-AA-IoTSD
mechanism is proposed for annotating the streaming data semantically.
The Fig. 1 shows an overview of the simplified architectural model
of the proposed work. At first, the data generated from IoT sensors
are collected from IoT sensor data world. On identification of the
sensor data, then the agents will classify and analyze the data. The

IoT streaming data generated from the data repository section; firstly,
to interpret the objects in the streaming data, the RDF framework is
used. Secondly, to abstract the data from the triple store, SPARQL
queries is required. The SPARQL Query Engine mainly consists of
three subcomponents. Those are Query Parser (QP), Query Optimizer
(QO), and Query Processor (QP). The Query Parser (QP) is used for
generating the triple patterns in a sequential manner. With the use
of the Query Optimizer (QO), the SPARQL queries are optimized
and processed. This task is accomplished before it goes to the next
component called Query Processor (QP). The SPARQL Query Engine
depicts the overall picture and model of the proposed approach. Each
component workflow descriptions discussed as follows:

A. Query Parser
This is the first subcomponent of the Query Execution Engine. This

subcomponent finds the input healthcare related SPARQL queries from
users, abstracts subsequent resources for the consequent subcomponent
named as Query Optimizer (QO) and produces a node list for the Query
Processor (QP). In this work, we used only basic SPARQL queries with
simple SELECT and WHERE clauses. The proposed approach also
supports other clauses, such as ORDERBY, GROUP BY, and FILTER.

TABLE I. Comparison of Semantic Annotation Methods

Approaches/
Methods

Automatic
Annotation

(Yes/No)

Manual
Annotation

(Yes/No)

Semi-
Automatic
Annotation

(Yes/No)

Training
data set

Application
Specific
Domain

Data Type
based on

Model/Framework
Technology used

SRSM and MTCRF
[9] No Yes Yes No Internet Web documents Rule, CRFs

Chen et al.,
SSMIMCR [10] No Yes Yes No Internet Web documents Conceptual relationships

De Maio et al.,
FBASAM [11] Yes Yes Yes Yes Internet Web documents Relational concept analysis

Barnaghi et al.,
SM2SS [12] No Yes Yes Yes IoT Sensor

networks Sensor streams model

Kolozali et al.,
KBA4IoTDS [13] No Yes Yes Yes IoT IoT data

streams IoT data model

Wei and Barnaghi et
al., SAM4SD [14] No Yes Yes No IoT sensor

network
Sensor

networks Sensors streams model

Chenyi et al.,
SOESAF [15] No Yes Yes No IoT IoT entity

information
Entity semantic annotation

framework

Bing, et al.,
SAM4IoTD [16] No Yes Yes No IoT Documents Rule

Ming et al.,
SAM4WSDL [17] No Yes Yes Yes IoT WSDL

documents Rule, Machine learning

Charton et al.,
ASAM4NE [18] Yes Yes Yes No Internet Web documents Semantic similarity, linked

data

Diallo et al., OBSAA
[19] Yes Yes Yes Yes Biomedicine Biomedical

Texts NLP, TF-IDF

Ahmed E. Khaled
and Sumi Helal,

ATLAS[22]
Yes Yes Yes No IoT Text Labelling Topic, REST

IHC-AA-IoTSD
(Proposed) Yes Yes Yes Yes IoT Streaming

sensor data

Hierarchical clustering,
automatic annotations,

SPARQL Queries

- 59 -

Regular Issue

Fig. 1 Architectural model of the proposed mechanism.

B. Query Optimizer
This is the second subcomponent and generates a Query Execution

Plan (QEP) for the SPARQL query. The processing of queries is
optimized by assessing the input query patterns in a meaningful
way. The query triple patterns are arranged in a hierarchical manner
for finding matching value result of a triple pattern function for the
subsequent triple pattern in the query execution plan.

C. Query Processor
In query processor subcomponent, the matching value results are

found, verified with triple patterns and finally combined for answering
the full query result. The validity of the triple patterns and input
queries are arranged in a hierarchical and topological order. Then the
intermediate mismatched patterns are reduced. Table II shows all the
symbols or notations used in this paper.

TABLE II. Symbols and its Descriptions

Symbol Description Symbol Description

sN starting Node cML common
Matching List

Tp Triple pattern MV Matching Value

nextN next Node nextNML next Node
Matching List

QEP Query Execution
Plan nextcN next common

Node

TL Triple List tmpP temporary Plan

Ts Triple store subP sub Plan

TpL Triple pattern
List nextT next Triple

GenTriple() Generate Triple cN common Node

The Algorithm 1 is used to translate the given label of information
into a RDF label using TranslateLabel() function. The input is taken as
n number of triples and correspondingly specify each type of label and
the processing triple time t is measured. The annotated <label> of RDF
data is the output. Firstly, it collects the various types of data from IoT
devices, to store the triples data starting from 1 to n as decision iterator.

If the condition p (t, xc) ≤ 1 is satisfied then extract every row and label
whichever is matched. At last, the list L has to be returned.

Algorithm 1: TranslateLabel () translates the given label into RDF label
Input: Number of triples denoted as n; type of each data item (type); t is
the processing time.
Output: List out the annotated (<label>) from RDF.
1: First collect the various types of data generated from IoT sensors
2: for i: =1 to n // i is the decision iterator
3. if p (t, xc) ≤ 1 as per the Eq. 3
4. then extract every row and label
5. add the matched label
6. close the each completed label
7. List L: = add element
8. end if
9. end for
10. Finally, return the list L.

The Algorithm 2 is used to generate the given RDF label of
information into triples using GenTriple() function. The input is taken
as n number of triples value and correspondingly specify each type of
label and subsequent time t is measured. The annotated <label> of RDF
data is the output. Firstly, it collects the various types of data from IoT
devices, to store the triples data starting from 1 to n as decision iterator.
If the condition label[i].isElement() = 1 is satisfied then it extracts each
label and annotates it as a triple, then it allocates the unique id for the
namely added resource whichever is matched. Finally, the list L with
RDF triples is returned.

Algorithm 2: For the generation of triples GenTriple() from a given
RDF label

Input: Number of triples named as n; value measured; type of each data
item (type); t is the measured time.
Output: List out the annotated (<label>) from RDF.
1. First, expand each label
2. for i: = 1 to n do // i is the decision iterator
3. if label[i].isElement() = 1 // return 1 when the current label
is matched element
4. extract every label and annotate it as triple
5. then allocate the unique id for namely added resource
6. List T: = add triples
7. close the completed triple list
8. end if
9. end for
10. return list L

Algorithm 3: IoT sensor data into annotated RDF data transformation
Input: Dataset to annotate; type of each data item (type)
Output: The annotated (<label>) is transformed into a reduced triple
format from source data.
1: First, collect the various types of data generated from IoT sensor S
2: Repeat this collection process up to the end of the last triple
3: Then annotate the List L: GenTriple(TranslateLabel())
4: There after extract every label and annotate it as triple
5: Allocate the unique id for newly added resource
6: End process loop
7: Return list L

- 60 -

International Journal of Interactive Multimedia and Artificial Intelligence, Vol. 6, Nº 2

In Algorithm 3, the IoT sensor data into annotated RDF data
transformation is shown. The input is taken as a dataset to annotate and
specifies each data item type. The annotated (<label>) is transformed
into a reduced triple format from source data. Firstly, it collects various
type of sensor data. It repeats this process until the last triple item is
matched. Then it annotates the List L: GenTriple (TranslateLabel()).
Thereafter it extracts every label and annotates it as a triple. It allocates
the unique id for the newly added resource.

D. Incremental Hierarchical Clustering driven Automatic
Annotation Process

The agents will play a key role to place the classification of data
in time basis by using the matching mechanism for grouping each
instance resources occurrence.

The matching objects are denoted as m of the RDF data and current
capture objects as C. the matching m ϵ RDF instances as shown in Eq. 3.1
and current capture C as shown in Eq. 3.2, at tn ϵ time interval. Xm and Xcc
form the instances () with the corresponding
time interval range t1 ≤ t2 ≤ t3 ……≤tn, for each individual i.

 (3.1)

 (3.2)

Here j starts from 1 to n.
For pattern recognition of data, let us take a resource r that should

be any category of data d. The scoring function Sd is used to calculate
the matching pattern data d at a particular time T. The individual match
value is x at time period t < T and is defined using Eq. (3.3).

 (3.3)

In order to generate the hierarchical clustering driven tree of the
IoT streaming data, the problem is formulated as follows: the input of
the sensor raw data is classified with agents and represented as data
streams DS = {ds1, ds2, ds3,….., dsn} in the D dimensional space, the pre-
notified meta data as the k dimensions {x1,…., xk}, the pre-clustered
streaming data values as {xk+1,…., xl}, and to measure the cluster
distance among the data patterns as dist(cl1, cl2). At starting, each
classified data is assigned to its own cluster. Each data pattern in DS
and the cluster cli = {dsi}, CL = {cl1,…..,cln} are selected for measuring
the minimum distance between data object. Then the merge operation
is performed until the none of the cluster can be left blank or empty.

 while CL.size > 1 do
 if (clmin1, clmin2) = min dist (cli , clj) then
 for all (cli , clj) in cluster CL
 Remove clmin1, clmin2 from cluster CL
 Add {clmin1, clmin2} to cluster CL
 end if
 end while
The dist (cl1, cl2) is measured as, for example

cl1 = {ds11, ds12, ds13, ….., ds1n} and cl2 = {ds21, ds22, ds23, ….., ds2n},
then . Whereas dist (ds1i , ds2j)
may be calculated using any of the mahalanobis distance, Euclidean
distance, or Minkowski distance function in the D dimensional space.
The same procedure is performed until the semantic annotations are
extracted from the hierarchical tree by cutting into horizontally or
vertically and adding the data streams in incremental manner.

The following list of steps are required to design an incremental
hierarchical clustering driven automatic annotations for unifying IoT
streaming data.

The input data streams DS = {ds1, ds2, ds3, ….., dsn} are obtained
from the IoT sensor data repositories in the D dimensional space.

The incremental hierarchical clustering based nearest neighbor
chain is used for clustering streaming data.

It starts with any node S in the hierarchical tree, elaborates it until
a RNN (Reciprocal Nearest Neighbor) pair of data samples, and then
agglomerates these data samples.

 Continue the same process with the hierarchical tree of the
previously annotated objects using RNN.

The RNN of object p and q, where object q must satisfy the
condition

Thereafter, the clustering distance dist(p, q) using the Euclidean
similarity distance measuring function is measured.

The establishment of the linkage or distance between clusters of
the hierarchical tree is done using wards method

 where is the center of the cluster e
and ne is the number of data samples involved in it.

Finally, the semantic representations between the clustered
hierarchical trees are annotated with SPARQL queries.

In the Resource Description Framework (RDF), the data is
generally warehoused as a combination of statements in triples format
as {Subject Sb, Predicate Pr, Object Obj}, which is similar to an entity
representation in DBMS as {entity e, property p, value v}. Subjects
and predicates stored in triples are URIs when objects can be either
Uniform Resource Identifiers (URIs) or literal values. SPARQL is a
Simple Protocol and RDF Query Language is used for retrieving data
stored in RDF repositories. Its syntax is similar to SQL; thus it contains
two main clauses, e.g., SELECT and WHERE. The SELECT clause
identifies the statements as triples that will appear in the query results.
The WHERE clause provides the basic graph pattern to match against
the data graph. We consider four disjoint sets Var (variables), Uri
(URIs), Blnk (blank nodes) and Ltr (literals).

Almost every SPARQL query contains a set of triple patterns called
a basic graph pattern. A basic graph pattern, BGP, is a finite set of triple
patterns {tp1, tp2, tp3.…,tpn}, in which each tp is a triple as shown in
Eq. (3.4).

 (3.4)

The sequence of the patterns is framed with different combinations
of the triples as shown in Eq. (3.5)

 (3.5)

The Query Execution Plan (QEP) is measured based on the
sequence of patterns generated by triples (tp1, tp2, tp3, ... tpn) as long
as the long sequence patterns are generated. Such that there is at least
one common medium of sequence patterns among tp1 and tpi+1 from
(Subject as S, Object as O, and Predicate as P) being selected, and it
follows any one of the patterns as shown in Eq. (3.6-3.8).

 (3.6)

 (3.7)

 (3.8)

Here S(tp), P(tp), and O(tp) are the Subject, Predicate, and Object
respectively. If anyone of the triple patterns is satisfied with the
required query then the query execution plan is assigned to the Query

- 61 -

Regular Issue

Optimizer (QO) subcomponent.
In order to develop the query execution plan, the query in

Algorithm 4 is processed and stored in the triple store (ts). The
loaded query is mapped with each triple pattern to subsequent
nodes. Sometimes, it refers to other triple patterns that are matched
with the stored triple values i.e. (node, [adjacent_TL]). The subject,
predicate, and object manner are matched by applying the SPARQL
query; finally, the corresponding RDF graph is generated. In
Algorithm 4, the query execution plan is shown. The motivation
behind this query execution plan is engaging the ordered triple
patterns to indexed RDF data and improved version of ordered
triple patterns to process the queries in an efficient manner. After
generating an ordered triple pattern list for the execution plan, the
residual sequential triple patterns that are in the triple list are not
attached to the current execution plan. The Tp is considered as the
triple pattern in QEP. The nextN <= get_nextN (Tp, sN) is placed
subject as first node and object as the second node and vice versa
generated. The subP is the sub plan used for storing the remaining
triple pattern part for QEP. The appended data triple pattern is a
subset of adjacent triple list and TpL is the not visited list then
create an intermediator plan for annotating current pattern objects.
Such that, consider this one as the current query evaluation plan
for executing queries. Finally, the next triple and triple pattern are
merged with adjacent triple list, evaluated with QEP.

Algorithm 4: GET_ Query_Execution_PLAN (sN, Tp)
Input: sN - starting Node; tp- triple pattern; ts- triple store (for storing
every query generated triple).
Output: QEP, - generates longest triple patterns in RDF format
1: QEP <= Tp // triple pattern is considered in QEP
2: nextN<= get_nextN (Tp, sN)
// if N is the Node and it is in subject place, nextN is its object.
 // if N is the Node and it is in object place, nextN is its subject
3: adjacentTL<= getTL (Ts, nextN) // TL- Triple List; Ts- Triple store
4: subP<= Ø // load the remaining triple pattern part for QEP; subP-
sub Plan
5: for each data triple pattern TpL € adjacentTL do // TpL- Triple
pattern List
6: if (TpL ≠ visited node) then
7: tmpP <= GET_Query_PLAN (nextN, TpL)
8: if len (subP)< len (tmpP)then
9: subP <=tmpP
10: nextT<= TpL
11: end
12: end
13: end
14: QEP<= adjacentTL \ {nextT, Tp} // nextT is included in subP
15: QEP<=subP
16: return QEP

The following are the list of steps required to execute the query
plan.
1. Firstly, go to the file menu, in that select new triple store-

appropriate path name that has been given for storing work in the
triple store.

2. Once the path is identified by triple store, a maximum number of
estimated triples are selected. (E.g. 100000).

3. Then load the triples of any format (E.g. N-triples, RDF/XML,
N-Quads).

4. Go to the Query view in View menu bar. The required query is
applied for annotating the data in RDF format.

5. Then run the SPARQL query, it shows the result as ?s ?p ?o in
tabular form.

6. Finally, click on the create visual graph icon, then it generates
the annotated RDF graph. Make changes on the graph as per the
neediness of the user.
In the Query Execution Plan (QEP), the subject, predicate, and

object are placed in triple patterns format. Therefore, at any point,
only the vertices and edges can be placed. The time complexity for
generating the query execution plan is O(|S|).|P|). Here, |S| is the
number of Subjects placed in the healthcare dataset, and |P| is the
number of Predicates placed in the healthcare dataset. Therefore, the
proposed algorithm 4 and algorithm 5 take total computational time
O(|S|) + |P|) as the time complexity, because this work uses every
Subject and Predicate or node only once.

IV. Experimental Methodolgy

In this section, the proposed mechanism is described with
automatic annotations for unifying the IoT streaming data. In addition,
the implementation results of the proposed mechanism with SPARQL
queries processing is discussed.

A. Adding Semantic Annotations to the IoT Streaming Data
In this proposed research work, to achieve semantic annotations,

the query processing mechanism and triple patterns are used. The
authors have analyzed and tested on three different healthcare datasets
using incremental hierarchical clustering driven automatic annotations
based on IoT streaming data.

B. Query Processing
In this section, the queries are processed and executed based on the

query execution plan so Algorithm 4 is used. To perform that operation
we need to observe the correct triple patterns from the triple store or
find the invalid annotation results. The following common steps used
in Algorithm 5 using a triple store are followed:
1. Firstly, the input cN is considered as the common node or node

pattern to retrieve the subsequent triple pattern (tp) from query
execution plan and generate the annotation results from triple store
to the common node cN.

2. The matching common node cN is attached to the common
matching list cML.

3. For each common annotated data is resulted to merge the annotator
list of final matching list.

4. Then, each matching value is a subset of the final matching list and
contains the annotated attributes for matching value identification.

5. The next value is placed on the basis to get the next node and add
the mapping value to the triple store.

6. If any node is mapped with the next node then the mapping
annotations consisting of next node, matching value, and next
node matching list are added. If any node is not matched with the
next node then all corresponding matching values and associated
annotations are removed.

7. This entire process is repeated until the all-existing triples are
reached and mapping of the common node cN exists that was taken
from triple pattern tp.
The SPARQL queries are processed for annotating the matching

healthcare data and its associated values. However, the queries are
different triple patterns (tp1, tp2,, tpn) and the matching subject of
any common node is retrieved as well as its corresponding predicates.

- 62 -

International Journal of Interactive Multimedia and Artificial Intelligence, Vol. 6, Nº 2

Algorithm 5: GET_ PROCESS_TRIPLE_PATTERN (cN)
Input: cN is the common Node (node pattern).
Data: QEP- Query Execution Plan for processing triple patterns using
SPARQL queries. Tp- Triple pattern;
Ts- Triple store (for storing every intermediate generated data). Ant-
annotation
Output: SPARQL query and RDF triple data mapping
1: Tp<= QEP.getNext () // next triple pattern is considered in QEP
and is placed
2: cML <=M (cN) // common node match list placed
3: for each ant € getAnnotatorList (cML) do
4: for each MV € cML.getMV (ant) do
5: nextN <=get_nextN (Tp, cN)
6: nextNML <=findMatches (nextN, MV)
7: if any node is mapping with nextN then
8: M. addMap (nextN, MV, nextNML) // now MV is
 the annotator of nextN
9: else
10: remove (MV) // remove the matching values and
 associated annotators
11: end
12: end
13: end
14: if any node is matched with result of Tp then
15: nextcN<=findNextcN (Tp)
16: PROCESS_TRIPLE_PATTERN (ncN)
17: end

Fig.2. SPARQL Query.

The Fig. 2 is a sample SPARQL query for annotation of triples
such as subject, predicate, and object manner. The SPARQL queries
are widely used for annotating the RDF data for machine-readable and
semantically describable data. There is another option in SPARQL
queries to extract the full dataset attribute information with a limit basis
like 10k, 20k, 30k, 100k, and so on triples.

V. Performance Evaluation

This section employs the experimental datasets used for the
proposed IHC-AA-IoTSD mechanism. In addition, the performance
evaluation metrics are discussed for evaluating the performance of the
IHC-AA-IoTSD in detail. In the final analysis, the time complexity of
the proposed algorithms are measured.

A. Data Setup
For evaluation of the proposed mechanism IHC-AA-IoTSD, three

different kinds of healthcare datasets, namely Heart diseases, Heart
attack, and Diabetes are taken. These are openly available datasets
from the UCI Machine learning repository. Table III shows the dataset
details including names of datasets, the number of triples in the
datasets, and downloadable resources information.

TABLE III. Dataset Details

S.No Dataset
Name

No. of
Triples Source

1 Heart diseases 212154 https://archive.ics.uci.edu/ml/datasets/
heart+Disease

2 Heart Attack 112896 https://www.kaggle.com/
imnikhilanand/heart-attack-prediction

3 Diabetes 142547 https://archive.ics.uci.edu/ml/datasets/
diabetes

B. Experimental Environment
To evaluate the performance proposed mechanism, a conventional

and regular laptop was used with the configuration of Windows 10
Home 64-bit, 8 GB RAM, 1 TB HDD, 2 cores, 2.2 GHz CPU clock
speed, and Intel® Core™ i7-8th Gen-8750H CPU type. The Gruff tool
with Java 1.8.0 platform was used to experiment the healthcare data.
The Tableau and Allegro Graph tools support to visualize the data in
a good manner for users. The SPARQL query language was used for
annotating the healthcare data to communicate patient and doctors in
a meaningful way.

C. Performance Metrics
To evaluate the performance of the proposed framework, the

following metrics are considered for measuring the framework. These
metrics are generated from the confusion matrix as shown in Table. IV.

TABLE. IV. Confusion Matrix

Predicted as “YES” Predicted as “NO”

Actually as
“YES”

True Positive False Negative

Actually as
“NO”

False Positive True Negative

• True Positive Clant → Clant: This is an assessment of correctly
clustered annotations considered correctly as clustered annotations.

• True Negative NClant → NClant: This is an assessment of non-clustered
annotations considered correctly as non-clustered annotations.

 (4.1)

• False Positive NClant → Clant: This is an assessment of non-clustered
annotations considered incorrectly as clustered annotations.

• False Negative Clant → NClant: This is an assessment of clustered
annotations considered incorrectly as non-clustered annotations.

1. True Positive Rate (TPR)
TPR states the sensitivity value and measures correctly clustered

annotations from the dataset as shown Eq. (4.1). Eq. (4.2) corresponds
to the true negative rate (TNR).

 (4.2)

2. False Positive Rate (FPR)
FPR measures the significance level, which scales the proportion of

non-clustered annotations that are interpreted as clustered annotations
in the automatic annotation process, and generated as input dataset
sequence as shown Eq. (4.3).

 (4.3)

- 63 -

Regular Issue

3. False Negative Rate (FNR)
FNR scales the proportion of clustered annotations that are

interpreted as non-clustered annotations in the clustered data annotation
process as shown Eq. (4.4).

 (4.4)

4. Accuracy
Accuracy is the first step towards performance measure where

it defines the ratio between the total counts of correct clustered
annotations made to a total count of clustered annotations made as
shown Eq. (4.5).

 (4.5)

5. Precision, Recall & F-measure
Precision discourses about the exactness of the clustered data, and

the Recall voices about completeness of the data. The Precision and
Recall discuss more about the detected accuracy of the data, and the
accuracy should not deal much about false results. The F-measure is
the mean of precision and recall. The equations depicted from (4.6) to
(4.8) is Precision, Recall, and F-measure respectively.

 (4.6)

 (4.7)

 (4.8)

These ML metrics are used on the proposed mechanism for
improving cluster efficiency and unifying the IoT streaming data.

D. Experimental Results and Discussions
This experiment is conducted under the stimulus of three healthcare

datasets namely- Heart Diseases, Heart Attack, and Diabetes by
applying various triple sizes with 10k, 20k, 30k, 40k, 50k, and 100k
respectively. Annotating the objects of streaming data, six SPARQL

queries are used to evaluate the proposed IHC-AA-IoTSD mechanism
as represented in Fig.3 to Fig.10.

Fig. 3. SPARQL Query 1.

The SPARQL query 1 shown in Fig. 3, queries for the drug types
and values annotated with hierarchical clustered data. The SPARQL
query 2 shown in Fig. 4 is used to extract unique heart attack attributes
and their values from heart attack dataset.

Fig. 4. SPARQL Query 2.

The role of SPARQL queries is highly enrich to all attributes for
annotation. In addition, the queries are effectively annotated various
attributes in lower execution time.

Fig. 5. SPARQL Query 3.

The SPARQL query 3 is as shown in Fig. 5 and its resultant RDF
graph as shown in Fig. 7. The hierarchical tree based predicates are
annotated over the various triple data objects.

Fig. 6. SPARQL Query 4.

Fig. 7. Annotated heart attack diagnostic measurement values in a hierarchical tree.

- 64 -

International Journal of Interactive Multimedia and Artificial Intelligence, Vol. 6, Nº 2

The SPARQL query 4 as shown in Fig. 6. The Fig. 8 shows the
resulted output of query 4. Moreover, the diabetes data set contains
of predicates as row id, value, and number of the deaths, etc. Using
annotation process, the representation of the year wise death rates have
been enriched as well as extracted.

Fig. 9. SPARQL Query 5.

The SPARQL query 5 shown in Fig. 9 has been performed on heart
diseases dataset for annotating the healthcare records by means of
subject, predicate, and object manner. It indicates that the annotations
performed on the whole dataset with accurate annotations. The
SPARQL query 6 shown in Fig. 10 is widely used for annotating the
heart diseases data on value and predicate basis annotations. In this,
the corresponding predicate as the number of national payments on
year wise, payment for heart diseases, measure id, measure name,
measure start date, measure end date, type and corresponding values
are annotated. The SPARQL query 5 and query 6 are used in this paper
to annotate the healthcare data by varying triple data size up to 100k
triples. These results have not been presented because these annotations
make the things complex and not visible to the users.

Fig. 10. SPARQL query 6.

However, the results of SPARQL query 1 to query 6 clearly
indicate that automatic annotations are more concisely preferable than
the manual and semi-automatic annotations. Because in automatic
semantic annotations, the trained and classified data are labelled using

an automated annotation system. The average execution time of the
various queries are measured, and it achieves the lowest compared with
ATLAS [22], FBASAM [11], and OBSAA [19] approaches.

The first experimental investigation of IHC-AA-IoTSD is validated
through TPR by applying various triples with respect to a stable FPR
10, 20, 30 and 40% over the benchmark mechanisms such as ATLAS,
FBASAM, and OBSAA is observed in Figs. 11, 12, and 13 respectively.

Fig.11 (a-d) shows the leading TPR value on Heart Diseases
dataset of proposed IHC-AA-IoTSD over ATLAS, FBASAM, and
OBSAA with respect to the stable FPR of 10%, 20%, 30%, and 40%
respectively. Fig. 11 (a) result proves that IHC-AA-IoTSD is capable to
preserve the TPR around 0.95 at dynamically allocated triples and this
TPR value infers 12% success rate than the benchmark mechanisms
ATLAS, FBASAM, and OBSAA respectively under 10% FPR. Fig. 11
(b) shows the dominant TPR value of IHC-AA-IoTSD over ATLAS,
FBASAM, and OBSAA respectively under 20% FPR and is capable
to maintain its TPR value around 0.92 at dynamically allocated triples
even the FPR is increased. In addition, the proposed IHC-AA-IoTSD
proves a greater TPR around 13% than the benchmark mechanisms
ATLAS, FBASAM, and OBSAA respectively. Likewise, Fig. 11 (c)
represent the TPR value of IHC-AA-IoTSD over ATLAS, FBASAM,
and OBSAA under 30% FPR and is capable to withstand its TPR value
around 0.9 at various dynamically allocated triples and proves a greater
TPR around 11% than the benchmark mechanisms ATLAS, FBASAM,
and OBSAA respectively. Similarly, Fig. 11 (d) represent the TPR
value of IHC-AA-IoTSD over ATLAS, FBASAM, and OBSAA
respectively under 40% FPR. Besides, proposed IHC-AA-IoTSD
is achieved a marginable TPR around 0.88 at dynamically allocated
triples and proves this TPR value infers 8% higher accurate than the
benchmark mechanisms ATLAS, FBASAM, and OBSAA respectively.

Fig.12 (a-d) shows the dominant TPR value on Heart Attack
dataset of proposed IHC-AA-IoTSD over ATLAS, FBASAM, and
OBSAA with respect to the stable FPR of 10%, 20%, 30%, and 40%
respectively. Fig. 12 (a) result proves that IHC-AA-IoTSD is capable
to preserve the TPR around 0.92 at dynamically allocated triples
and this TPR value infers 12% success rate than the benchmark

Fig. 8. Annotated diabetes diagnostic measurement values.

- 65 -

Regular Issue

(a) (b)

(c)

0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8
0,9

1

10K 20K 30K 50K 100K

TP
R

Triple size
IHC-AA-IoTSD ATLAS FBASAM OBSAA

0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8
0,9

1

10K 20K 30K 50K 100K

TP
R

Triple size
IHC-AA-IoTSD ATLAS FBASAM OBSAA

(d)

0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8
0,9

1

10K 20K 30K 50K 100K

TP
R

Triple size
IHC-AA-IoTSD ATLAS FBASAM OBSAA

0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8
0,9

1

10K 20K 30K 50K 100K

TP
R

Triple size
IHC-AA-IoTSD ATLAS FBASAM OBSAA

Fig. 11. True Positive Rate (TPR) on Heart Diseases dataset by varying triple size (a) false positive rate =10%, (b) false positive rate =20%, (c) false positive
rate =30%, (d) false positive rate =40%.

(a) (b)

(c)

Triple size
IHC-AA-IoTSD ATLAS FBASAM OBSAA

Triple size
IHC-AA-IoTSD ATLAS FBASAM OBSAA

(d)

Triple size
IHC-AA-IoTSD ATLAS FBASAM OBSAA

Triple size
IHC-AA-IoTSD ATLAS FBASAM OBSAA

0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8
0,9

1

10K 20K 30K 50K 100K

TP
R

0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8
0,9

1

10K 20K 30K 50K 100K

TP
R

0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8
0,9

1

10K 20K 30K 50K 100K

TP
R

0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8
0,9

1

10K 20K 30K 50K 100K

TP
R

Fig. 12. True Positive Rate (TPR) on Heart Attack dataset by varying triple size (a) false positive rate =10%, (b) false positive rate =20%, (c) false positive rate
=30%, (d) false positive rate =40%.

- 66 -

International Journal of Interactive Multimedia and Artificial Intelligence, Vol. 6, Nº 2

mechanisms ATLAS, FBASAM, and OBSAA respectively under 10%
FPR. Fig. 12 (b) shows the dominant TPR value of IHC-AA-IoTSD
over ATLAS, FBASAM, and OBSAA respectively under 20% FPR
and is capable to maintain its TPR value around 0.9 at dynamically
allocated triples even the FPR is increased. In addition, the proposed
IHC-AA-IoTSD proves a greater TPR around 13% than the benchmark
mechanisms ATLAS, FBASAM, and OBSAA respectively. Likewise,
Fig. 12 (c) represent the TPR value of IHC-AA-IoTSD over ATLAS,
FBASAM, and OBSAA under 30% FPR and is capable to withstand
its TPR value around 0.88 at various dynamically allocated triples and
proves a greater TPR around 11% than the benchmark mechanisms
ATLAS, FBASAM, and OBSAA respectively. Similarly, Fig. 12 (d)
represent the TPR value of IHC-AA-IoTSD over ATLAS, FBASAM,
and OBSAA respectively under 40% FPR. Besides, proposed IHC-
AA-IoTSD is achieved a marginable TPR around 0.86 at dynamically
allocated triples and proves this TPR value infers 7% higher accurate
than the benchmark mechanisms ATLAS, FBASAM, and OBSAA
respectively.

Fig.13 (a-d) shows the dominant TPR value on Heart Diseases
dataset of proposed IHC-AA-IoTSD over ATLAS, FBASAM, and
OBSAA with respect to the stable FPR of 10%, 20%, 30%, and 40%
respectively. Fig. 13 (a) result proves that IHC-AA-IoTSD is capable to
preserve the TPR around 0.94 at dynamically allocated triples and this
TPR value infers 13% success rate than the benchmark mechanisms
ATLAS, FBASAM, and OBSAA respectively under 10% FPR. Fig. 13
(b) shows the dominant TPR value of IHC-AA-IoTSD over ATLAS,
FBASAM, and OBSAA respectively under 20% FPR and is capable
to maintain its TPR value around 0.92 at dynamically allocated triples
even the FPR is increased. In addition, the proposed IHC-AA-IoTSD
proves a greater TPR around 12% than the benchmark mechanisms
ATLAS, FBASAM, and OBSAA respectively. Likewise, Fig. 13 (c)

represent the TPR value of IHC-AA-IoTSD over ATLAS, FBASAM,
and OBSAA under 30% FPR and is capable to withstand its TPR value
around 0.9 at various dynamically allocated triples and proves a greater
TPR around 11% than the benchmark mechanisms ATLAS, FBASAM,
and OBSAA respectively. Similarly, Fig. 13 (d) represent the TPR
value of IHC-AA-IoTSD over ATLAS, FBASAM, and OBSAA
respectively under 40% FPR. Besides, proposed IHC-AA-IoTSD
is achieved a marginable TPR around 0.87 at dynamically allocated
triples and proves this TPR value infers 9% higher accurate than the
benchmark mechanisms ATLAS, FBASAM, and OBSAA respectively.

In the second experimental investigation of IHC-AA-IoTSD
validated through the detection accuracy, TNR, FNR, TPR, Precision,
and FPR over the benchmark mechanisms such as ATLAS, FBASAM,
and OBSAA techniques respectively.

Fig. 14 (a) represents the average detection accuracy of IHC-
AA-IoTSD on three healthcare datasets with various triple sizes. The
results confirm that IHC-AA-IoTSD is capable to accomplish superior
detection accuracy in heart dataset from the UCI data repository, and it
acquired detection accuracy of 9–94% from 10k triples to 100k triples
respectively. Nevertheless, ATLAS facilitates a detection accuracy
of 7–90% from 10k triples to 100k triples respectively, FBASAM
achieves a detection accuracy of 5–81% from 10k triples to 100k triples
respectively and OBSAA ensures a detection rate of 2–75% from 10k
triples to 100k triples respectively. Performing tests on heart attack
dataset from the kaggle data repository, it got a detection accuracy of
11–97% from 10k triples to 100k triples respectively. Nevertheless,
ATLAS facilitates a detection accuracy of 9–93% from 10k triples to
100k triples respectively, FBASAM achieves a detection accuracy of
7–89% from 10k triples to 100k triples respectively and OBSAA ensures
a detection rate of 4–84% from 10k triples to 100k triples respectively.
Performing tests on diabetes dataset from the UCI data repository, it

(a) (b)

(c)

Triple size
IHC-AA-IoTSD ATLAS FBASAM OBSAA

Triple size
IHC-AA-IoTSD ATLAS FBASAM OBSAA

(d)

Triple size
IHC-AA-IoTSD ATLAS FBASAM OBSAA

Triple size
IHC-AA-IoTSD ATLAS FBASAM OBSAA

0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8
0,9

1

10K 20K 30K 50K 100K

TP
R

0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8
0,9

1

10K 20K 30K 50K 100K

TP
R

0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8
0,9

1

10K 20K 30K 50K 100K

TP
R

0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8
0,9

1

10K 20K 30K 50K 100K

TP
R

Fig. 13. True Positive Rate (TPR) on Diabetes dataset by varying triple size (a) false positive rate =10%, (b) false positive rate =20%, (c) false positive rate
=30%, (d) false positive rate =40%.

- 67 -

Regular Issue

got a detection accuracy of 10–96% from 10k triples to 100k triples
respectively. Nevertheless, ATLAS facilitates a detection accuracy
of 7–90% from 10k triples to 100k triples respectively, FBASAM
achieves a detection accuracy of 5–84% from 10k triples to 100k triples
respectively and OBSAA ensures a detection rate of 3–80% from 10k
triples to 100k triples respectively. On an average IHC-AA-IoTSD
got the 4% detection accuracy increases from ATLAS mechanism at
10k triples whereas at 100k triples got the same improvement. After
combining the three healthcare dataset results with increased detection

accuracy, the results indicating that 2%, 4%, and 7% decrease than
the ATLAS, FBASAM, and OBSAA techniques respectively. This
effectiveness of IHC-AA-IoTSD by means of detection accuracy
is primarily payable to the enhanced process of multi-agent based
semantic annotation used for classifying and testing. This detection
accuracy is also because of the agent-based automatic semantic process
stimulated in the IHC-AA-IoTSD annotation mechanism.

Fig.14 (b) shows the TNR value of IHC-AA-IoTSD under varying
triple data size and the result endorses that it is effective in enlightening

(a)

(b)

(c)

(e)

(d)

(f)

Fig. 14. (a) Detection Accuracy of IHC-AA-IoTSD under various triple sizes, (b) True Negative Rate of IHC-AA-IoTSD under various triple sizes (c) False
Negative Rate of IHC-AA-IoTSD under various triple sizes (d) True Positive Rate of IHC-AA-IoTSD under various triple sizes (e) Precision Rate of IHC-AA-
IoTSD under various triple sizes (f) False Positive Rate of IHC-AA-IoTSD under various triple sizes.

- 68 -

International Journal of Interactive Multimedia and Artificial Intelligence, Vol. 6, Nº 2

the TNR value by 15-23% differing to ATLAS, FBASAM, and OBSAA,
which enable an improvement of 2%, 5%, and 10% from 10k triples to
100k triples. The results about the enhancement of TNR value prove
that the IHC-AA-IoTSD performs better because of the patient and
doctor annotating the healthcare data enabled in the detection process.

Fig.14 (c) depicts the reduced FNR of IHC-AA-IoTSD under
changing triple rate and ensures that, it can minimize the FNR of
about 16–30%, which is hardly 8% decrease at 10k triple size and 12%
decrease at 100k triple size than ATLAS framework testing on heart
diseases dataset. Testing on heart attack dataset, it can minimize the
false negative rate of about 17–29%, which is nearly 8% decrease at 10k
triple size and 8% decrease at 100k triple size than ATLAS framework.
Similarly, by testing on diabetes dataset, it can minimize the false
negative rate of about 18–29%, which is nearly 8% decrease at 10k
triple size and 12% decrease at 100k triple size than ATLAS approach.
The results depict that, the decrease in false positive rate at 10k triple
size is nearly 8, 14, and 16% testing on Heart diseases dataset, nearly
8, 12, and 22% testing on Heart Attack dataset, and nearly 6, 14, 22%
testing on Diabetes dataset than the ATLAS, FBASAM, and OBSAA
techniques respectively. After combining the three healthcare dataset
results with reduced False Negative Rate (FNR), the results indicate a
7%, 13%, and 18% decrease compared to the ATLAS, FBASAM, and
OBSAA techniques respectively.

Fig. 14 (d) represents the TPR value of IHC-AA-IoTSD under
changing triple rate and the result evidences its capacity of enhancing
the TNR value by 34–23%, which is nearly 5, 9 and 11% higher than
the TNR obtained by ATLAS, FBASAM, and OBSAA tested on three

healthcare datasets at 10k triples. The results are considered on an
average and it achieves the 5, 9, and 11% more than the TPR value
achieved by ATLAS, FBASAM, and OBSAA. The importance of
IHC-AA-IoTSD is based on agent preprocessing mechanism used for
annotating the triple data and SPARQL queries that could be optimally
applicable for healthcare data annotations.

Fig. 14 (e) represents the Precision rate of IHC-AA-IoTSD under
varying data triple sizes at 10k, 20k, 30k, 40k, 50k, and 100k on 3
different datasets. The result evidences by enhancing the Precision
value around 5–21%, which is nearly 5, 10 and 17% higher than
the Precision rate simplified by ATLAS, FBASAM, and OBSAA
testing on Heart Diseases dataset using 10k triples. Similarly, nearly
6, 10 and 15% higher than the Precision rate simplified by ATLAS,
FBASAM, and OBSAA testing on Heart Attack dataset at 10k triples,
and nearly 7, 12 and 21% higher than the Precision rate obtained by
ATLAS, FBASAM, and OBSAA testing on Diabetes dataset using
10k triples. After combining the three healthcare dataset results with
increased Precision rate, the results indicate that around 6%, 11%, and
17% increase than the ATLAS, FBASAM, and OBSAA techniques
respectively.

Fig.14 (f) depicts the reduced FPR of IHC-AA-IoTSD under
varying data triples and ensures that, it can minimize the FPR around
6–24%, which is nearly 3% decrease at 10k triple size and 6% decrease
at 100k triple size compared to the ATLAS framework, testing on heart
diseases dataset. Testing on heart attack dataset, it can reduces the
FNR about 8–29%, which is nearly 5% decrease at 10k triple size and
8% decrease at 100k triple size compared to the ATLAS framework.

(a)

(b)

(c)

(d)

Fig.15. Average Execution Time (ms) by various queries (a) at 10k triples (b) at 20k triples (c) at 30k triples (d) at 50k triples

- 69 -

Regular Issue

Similarly, by testing on diabetes dataset, it can minimize the false
negative rate of about 5–25%, which is nearly 7% decrease at 10k triple
size and 11% decrease at 100k triple size than ATLAS approach. The
results depict that, the decrease in false positive rate at 10k triple size is
nearly 3%, 6%, and 10% testing on Heart diseases dataset, nearly 5%,
8%, and 14% testing on Heart Attack dataset, and nearly 7%, 11%, and
16% testing on Diabetes dataset compared to the ATLAS, FBASAM,
and OBSAA techniques respectively. After combining the three
healthcare dataset results with reduced False Positive Rate (FPR), the
results indicate 5%, 8%, and 13% decrease compared to the ATLAS,
FBASAM, and OBSAA techniques, respectively.

In the third experimental investigation of IHC-AA-IoTSD
validated through the Average Execution Time of various queries over
the benchmark mechanisms such as ATLAS, FBASAM, and OBSAA
techniques respectively.

Fig. 15 (a-d) shows measured average execution time by various
queries from Q1 to Q6 at 10k triples, 20k triples, 30k triples, and 50k
triples, respectively. The result proves that IHC-AA-IoTSD is able
to maintain the Average Execution Time of 27 ms at various queries
and this Average Execution Time infers 12% success rate higher
than ATLAS, FBASAM, and OBSAA. Figs. 15 (a-d) highlights the
predominance Average Execution Time of IHC-AA-IoTSD over
ATLAS, FBASAM, and OBSAA under the 10k triples, 20k triples,
30k triples, and 50k triples respectively. The result confirms that IHC-
AA-IoTSD is able to endure its Average Execution Time of 86 ms at
various queries even when the triple size is increased. IHC-AA-IoTSD
enables a superior Average Execution Time of 16% when compared to
ATLAS, FBASAM, and OBSAA with all the queries.

E. Complexity Analysis
Moreover, the time complexity of IHC-AA-IoTSD scheme, which

used algorithms from 1 to 3, is determined to be T(n) for algorithm
perceived instances staring from j is 1 to n and i value between 1 to 9.
The time complexity of algorithm 1 is calculated by T1(n), algorithm
2 is by T2(n), and algorithm 3 is by T3(n). At last, these three times
complexities will be combined to get the overall time complexity T(n).
Let us see how to find the time complexity of T1(n), it is as follows in
Eq. (5.1).

 (5.1)

Similarly, the time complexity is generated for algorithm 2 as
follows in Eq. (5.2).

 (5.2)

Similarly, the time complexity is generated for algorithm 3 as
follows in Eq. (5.3).

 (5.3)

Hence the total time complexity of IHC-AA-IoTSD is T(n)=θ(n3

).

VI. Conclusion and Future Work

In the IoT streaming data era, the sensor devices are generating
dynamic data continuously, which is heterogeneous. The IoT data
also consists of the real-time streaming data. To perform analysis and

annotating the streaming data is a current research problem faced by
researchers. Therefore, in this paper, the authors proposed IHC-AA-
IoTSD mechanism for unifying the hierarchical clustered data using
SPARQL queries. The experimental investigation of IHC-AA-IoTSD
has been conducted on three popular healthcare datasets by varying
triple data and measuring detection accuracy, precision, TPR, TNR,
FPR, and FNR. In the first experimental investigation, the TPR
value has been measured under the streaming of triples with stable
FPR diverse with 10, 20, 30 and 40%, respectively. In the second
experimental investigation, the average results have been taken for an
account and proves that the IHC-AA-IoTSD outperforms compared to
benchmark mechanisms such as ATLAS, FBASAM, and OBSAA. In
the third experimental investigation, the query average execution time
has been calculated by taking six different queries under 10k, 20k, 30k,
and 50k triples. Considering that IoT streaming data is dynamic and
heterogeneous, the proposed mechanism overwhelmed by efficiently
annotating the hierarchical clustered data. Moreover, the proposed
IHC-AA-IoTSD mechanism outperforms compared to the existing
state of the art schemes. In future, the proposed mechanism can be
optimized by considering the hash table (key, value pair) for storing
SPARQL queries. In addition, artificial intelligent systems need quicker
decisions on streaming data. In this scenario, the proposed mechanism
may be useful and can achieve efficient results. Besides, it can be
considered applying advanced deep learning techniques like Recurrent
Neural Networks (RNN) and Convolutional Neural Networks (CNN),
for annotating IoT sensor data with optimum results.

References

[1] G. Xiao, J. Guo, L. D. Xu, and Z. Gong, “User interoperability with
heterogeneous IoT devices through transformation,” IEEE Transactions
on Industrial Informatics, vol. 10, no. 2, pp. 1486– 1496, 2014.

[2] Rohit Dhall & Vijender Kumar Solanki, “An IoT Based Predictive
Connected Car Maintenance Approach,” International Journal of
Interactive Multimedia and Artificial Intelligence, ISSN 1989-1660,Vol 4,
no 3, pp 1-13, 2017.

[3] Sivadi Balakrishna, M Thirumaran, R. Padmanaban, and Vijender Kumar
Solanki “An Efficient Incremental Clustering based Improved K-Medoids
for IoT Multivariate Data Cluster Analysis”, Peer-to-Peer Networking and
Applications, Springer, Vol 13, no 3, pp 1-23, 2019.

[4] Sivadi Balakrishna, M Thirumaran, and Vijender Kumar Solanki “Machine
Learning based Improved GMM Mechanism for IoT Real-Time Dynamic
Data Analysis”, Journal of Revista Ingeniería Solidaria, Vol 16, No 30,
e-ISSN 2357-6014, pp 1-29, 2020.

[5] H. T. Lin, “Implementing Smart Homes with Open Source Solutions”,
International Journal of Smart Home Vol.7 Issue. 4, pp 289–295, 2013.

[6] Antunes, Mário, Diogo Gomes, and Rui L. Aguiar. “Towards IoT data
classification through semantic features.” Future Generation Computer
Systems, Vol. 8 no 6, pp 792-798, 2018.

[7] M. Junling, J. Xueqin, and L. Hongqi, “Research on Semantic Architecture
and Semantic Technology of IoT,” Research and Development, vol. 8, no.
5, pp. 26–31, 2014.

[8] Q. Xu, P. Ren, H. Song, and Q. Du, “Security enhancement for IoT
communications exposed to eavesdroppers with uncertain locations,”
IEEE Access, vol. 4, pp. 2840–2853, 2016.

[9] D. Rong, “The Research on Automatic Semantic Annotation Methods”,
Lanzhou University of Technology, Lanzhou, China, 2012.

[10] F. Chen, C. Lu, H.Wu. Wu, and M. Li, “A semantic similarity measure
integrating multiple conceptual relationships for web service discovery,”
Expert Systems with Applications, vol. 6 Issue.7, pp. 19–31, 2017.

[11] C. De Maio, G. Fenza, M. Gallo, V. Loia, and S. Senatore, “Formal
and relational concept analysis for fuzzy-based automatic semantic
annotation,” Applied Intelligence, vol. 40, no. 1, pp. 154– 177, 2014.

[12] P. Barnaghi, W. Wang, L. Dong, and C. Wang, “A linked-data model
for semantic sensor streams,” IEEE International Conference on and
IEEE Cyber, Physical and Social Computing, Green Computing and
Communications (GreenCom ’13), Beijing, China, pp. 468–475August

- 70 -

International Journal of Interactive Multimedia and Artificial Intelligence, Vol. 6, Nº 2

2013.
[13] S. Kolozali, M. Bermudez-Edo, D. Puschmann, F. Ganz, and P. Barnaghi,

“A knowledge-based approach for real-time IoT data stream annotation
and processing,” in Proc: International Conference on Internet of Things,
IEEE, pp. 215–222, 2014.

[14] W. Wei and P. Barnaghi, “Semantic annotation and reasoning for sensor
data,” in Smart Sensing and Context, vol. 5741 of Lecture Notes in
Computer Science, pp. 66–76, Springer, Berlin, Germany, 2009.

[15] P. Chenyi, Service-oriented entity semantic annotation in internet of
things [M.S. thesis], South China University of Technology, Guangzhou,
China, 2015.

[16] J. Bing, “Research on semantic-based service architecture and key
algorithms for the internet of things”, [Ph.D. thesis], Jilin University,
Changchun, China, 2013.

[17] Z. Ming, “Research on several key issues in internet of things applications”,
[Ph.D. thesis], Beijing University of Posts and Telecommunications,
Beijing, China, 2014.

[18] E. Charton, M. Gagnon, and B. Ozell, “Automatic semantic web
annotation of named entities,” in Advances in Artificial Intelligence, vol.
6657 of Lecture Notes in Comput. Sci., Springer, Berlin, Germany, pp.
74–85, 2011.

[19] G. Diallo, M. Simonet, and A. Simonet, “An approach to automatic
ontology-based annotation of biomedical texts,” Lecture Notes in
Computer Science, vol. 40 no. 31, pp. 1024–1033, 2006.

[20] M. Jacoby, A. Antonic, K. Kreiner, R. Lapacz, J. Pielorz. “Semantic
interoperability as key to IoT platform federation,” in LNCS 10218:
Interoperability and Open- Source for the Internet of Things, pp. 3-19,
2017.

[21] A.P. Plageras, K.E. Psannis, C. Stergiou, H. Wang, B.B. Gupta, “ Efficient
IoT- based sensor BIG Data collection- processing and analysis in Smart
Buildings”, Future Generation Computer Systems, 82, pp 349-357, 2018.

[22] A. E. Khaled, S. Helal, “Interoperable communication framework for
bridging RESTful and topic-based communication in IoT”, Future
Generation Computer Systems, Elsevier, 92, pp 628-643, 2019.

[23] Kolozali, S. Puschmann, D.; Bermudez-Edo, M.; Barnaghi, P. “On the
Effect of Adaptive and Non adaptive Analysis of Time-Series Sensory
Data”, IEEE Internet Things J., 3, pp 1084–1098, 2016.

[24] Mazayev, Andriy, Jaime A. Martins, and Noélia Correia. “Interoperability
in IoT through the Semantic Profiling of Objects.” IEEE Access 6, pp
19379-19385, 2017.

[25] Mayer, Simon, Jack Hodges, Dan Yu, Mareike Kritzler, and Florian
Michahelles. “An open semantic framework for the industrial Internet of
Things.” IEEE Intelligent Systems 32, no. 1, pp 96-101, 2017.

[26] Shi, Feifei, Qingjuan Li, Tao Zhu, and Huansheng Ning. “A survey of data
semantization in internet of things.” Sensors 18, no. 1, 313, 2018.

[27] Al Zamil, Mohammed Gh, Majdi Rawashdeh, Samer Samarah, M.
Shamim Hossain, Awny Alnusair, and Sk Md Mizanur Rahman. “An
annotation technique for in-home smart monitoring environments.” IEEE
Access 6, pp 1471-1479, 2018.

[28] Moutinho, Filipe, Luís Paiva, Julius Köpke, and Pedro Maló. “Extended
Semantic Annotations for Generating Translators in the Arrowhead
Framework.” IEEE Transactions on Industrial Informatics 14, no. 6, pp
2760-2769. 2018.

Sivadi Balakrishna

He received his Bachler of Technology (B.Tech) in the
Department of Computer Science and Engineering from
Jawaharlal Nehru Technological University (JNTU) in 2010
and Master of Technology (M.Tech) in the Department of
Computer Science and Engineering from Jawaharlal Nehru
Technological University (JNTU) in 2013, Kakinada, AP,
India. He is currently a Full-time Ph.D research scholar

from Pondicherry Engineering College in the Department of Computer Science
and Engineering, Pondicherry University (A Central University), Pondicherry,
India. He has qualified NET (National Eligibility Test) in Dec-2018, which
was conducted by UGC. He has more than 4 years of teaching experience in
various reputed institutions in computer science and engineering department.
He has published more than 15 research articles in various reputed International
Journals, International Conferences and Book Chapters. His current research
interests are Internet of Things (IoT), Machine Learning, and Semantic
Technologies.

Vijender Kumar Solanki

Vijender Kumar Solanki, Ph.D., is an Associate Professor
in Department of Computer Science & Engineering, CMR
Institute of Technology (Autonomous), Hyderabad, TS,
India. He has more than 11 years of academic experience
in network security, IoT, Big Data, Smart City and IT. Prior
to his current role, he was associated with Apeejay Institute
of Technology, Greater Noida, UP, KSRCE (Autonomous)

Institution, Tamilnadu, India & Institute of Technology & Science, Ghaziabad,
UP, India. He has attended an orientation program at UGC-Academic Staff
College, University of Kerala, Thiruvananthapuram, Kerala &Refresher course
at Indian Institute of Information Technology, Allahabad, UP, India. He has
authored or co-authored more than 50 research articles that are published in
journals, books and conference proceedings. He has edited or co-edited 10
books in the area of Information Technology. He teaches graduate & post
graduate level courses in IT at ITS. He received Ph.D in Computer Science
and Engineering from Anna University, Chennai, India in 2017 and ME, MCA
from Maharishi Dayanand University, Rohtak, Haryana, India in 2007 and
2004, respectively and a bachelor’s degree in Science from JLN Government
College, Faridabad Haryana, India in 2001.He is Editor in International Journal
of Machine Learning and Networked Collaborative Engineering (IJMLNCE)
ISSN 2581-3242, Associate Editor in International Journal of Information
Retrieval Research (IJIRR), IGI-GLOBAL, USA,ISSN: 2155-6377 | E-ISSN:
2155-6385 also serving editorial board members with many reputed journals.
He has guest edited many volumes, with IGI-Global, USA, InderScience &
Many more reputed publishers.

M.Thirumaran

He is currently working as an Assistant Professor in
Department of Computer Science and Engineering in
Pondicherry Engineering College. He has completed his
B.Tech in Pondicherry Engineering College in the year
2000 and completed his Post Graduation in Pondicherry
University in 2002. He has qualified NET examination
for three consecutive years from 2004 to 2006 which was

conducted by UGC. He completed his Ph.D in Pondicherry University in the
year 2014. He has interested in the domains of Service Oriented Architecture,
Web Technology, Web Application Security, Principles of Compiler Design and
Automata Theory and Computation. Also he has teaching experience around
15 years in the field of Computer Science Engineering. He has published more
than 80 research papers in various reputed International Conferences and
International Journals.

Edward Rolando Núñez-Valdez

Ph.D. from the University of Oviedo in Computer
Engineering. Master’s in software engineering from the
Pontifical University of Salamanca and B.S. in Computer
Science from Autonomous University of Santo Domingo.
He has participated in several research projects; He has
taught computer science at various schools and universities
and has worked in software development companies and

IT Consulting for many years. He has published several articles in international
journals and conferences. Currently working as Assistant Professor at the
University of Oviedo in Spain. His research interests include Software
Engineering, Object-Oriented technology, Web Engineering, Recommendation
Systems, Artificial Intelligence, Distributed Systems and DSL.

