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I. Introduction

SPEECH enhancement is a vital research problem in many audio 
and speech signal processing applications. The aim of the speech 

enhancement is to improve the quality and intelligibility of a noisy 
speech signal. In applications such as hearing aids, automatic speech 
recognition (ASR), mobile communication etc., speech enhancement 
has been an active research area and countless approaches have been 
proposed in the recent past to solve this problem [1]-[7]. One of the 
simplest methods to eliminate the additive background noise was 
spectral subtraction proposed by Boll [8]. The wiener filtering [9] 
based method was proposed to estimate the noise in means square 
error (MSE) manner. Another important method is MMSE [10], which 
performs nonlinear estimation of the short-time spectral amplitude 
(STSA) of the speech signals. An excellent adaptation of the MMSE 
estimation, acknowledged as Log-MMSE attempts to minimize the 
MSE in the log-spectral domain [11]. Additional approaches include 
the signal-subspace [12], sparse coding [13], and empirical mode 
decomposition (EMD) [14] based methods, which are frequently used 
to perform the task of speech enhancement.

Recently deep neural networks (DNNs) based deep learning 
architectures have been found to be exceptionally successful in the 
automatic speech recognition (ASR) [15]-[16]. This achievement of 

DNNs in ASR directed to investigate the DNNs for noise elimination 
for speech enhancement [3], [17]-[19]. Fig. 1 shows the DNN based 
speech enhancement framework. The key idea behind using a deep 
neural network for speech enhancement is that, the degradation of the 
speech by noise signal is a difficult process and a complex nonlinear 
architecture like deep neural network is suitable to model it. A very few 
in-depth studies based on DNNs for speech enhancement are available 
in the literature; however, DNNs have shown remarkable outcomes 
and outperformed many classical speech enhancement methods. 
A general feature of such studies [18] [20] is evaluated in matching 
noise conditions. Matching noise conditions implies that the testing 
noise source is similar to training noise source. Mismatched noise a 
condition means to the situations when a DNN model has not been 
aware of testing noise sources during training. Xu in [18] provided a 
prominent study related to speech enhancement in mismatch conditions 
using DNNs. During this study, DNN was trained based on the variety 
of noise sources and showed that large improvements are achievable in 
mismatched conditions by exposing DNNs to a large number of noise 
sources. Mismatched noise conditions are relatively difficult scenarios 
compared to matched conditions. In real-world environments, we 
expect the DNN not to only execute well on large noise sources but 
also on nonstationary noises. Generally, speech signals are degraded 
by multiple noise sources in the real world situations and therefore 
elimination of single noise source in previous works is limiting. In 
environments around us, multiple noise sources simultaneously mix 
with the target speech and this multiple noise types situations are 
obviously much difficult to eliminate/suppress. To examine the speech 
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enhancement in such complex nonstationary situations, we suggest 
moving to an environment explicit prototype.

Fig. 1. DNN based Speech Enhancement.

In this paper we focus on a situation where complex noises are 
combined, for example, people talking in the street while vehicles are 
moving and the construction works are in progress. We synthesized 
complex noisy stimuli by adding multi-talker babble, airport and street 
noise simultaneously with clean utterances at different input SNRs. 
We have considered the deep learning based approach for speech 
enhancement in complex-noisy environments and an ideal binary mask 
(IBM) is considered as a binary classification function by using deep 
neural network (DNN). IBM is used as a target function during training 
and testing; the trained DNNs are used to estimate the IBM. The mean 
square error (MSE) is used as an objective cost function. The estimated 
target function is then applied to multi-noise mixtures to obtain the 
target speech. 

The remaining paper is organized as: section II describes the basic 
problem and training DNNs for speech enhancement in complex-noisy 
environments, section III provides an explanation of the experiments 
and results and finally we concluded in section IV. 

II. DNN Based Speech Enhancement 

Our objective is to enhance a noisy speech in the complex-noisy 
conditions; where a number of possible different noise sources 
simultaneously degrades the quality of target speech utterances. 
The complex-noisy environments contain both stationary as well as 
nonstationary complex noise sources of completely different acoustic 

characteristics and are very close to real-world environments. Fig. 
2 shows the time-domain waveforms and power spectral densities 
of various noise sources. Speech degradation under such conditions 
is a difficult and complex process compared to the single noise 
source, consequently enhancement of noisy speech becomes a more 
difficult task. Deep Neural Networks have high non-linear modeling 
capabilities and are presented in this paper for speech enhancement in 
complex multi-noise conditions. Prior to the actual DNN depiction, it 
is imperative to specify target function for DNN processing. Ideal ratio 
mask (IRM), ideal binary mask (IBM), short-time Fourier transform 
(STFT) magnitude and its mask, Mel-frequency spectrum and log-
power spectra are potential target functions. We have selected IBM as 
target function [21]. During training, DNNs are trained and features 
are extracted from the noisy as well as clean speech utterances. A 
combined version of MFCC and RASTA-PLP features [22] are used 
in this paper. The extracted features are coupled with delta features 
to obtain Δ+DNN models. The time-frequency (T-F) representation 
utilized to create IBM which used a gammatone filter bank having 64 
linearly spaced filters on a MEL frequency scale 50 Hz to 8 kHz and 
a bandwidth is equal to one Equivalent Rectangular Bandwidth (ERB) 
[23]. The output of the filter bank is divided into 20 ms frames with 
10 ms overlap and with sampling frequency of 16 kHz. Let the noisy 
speech given as:

 (1)

Where s(t) and d(t) denote the clean speech and noise signals, 
respectively. The frequency-domain depiction of y(t) is obtained as: 

 (2)

Where, ω and k denote frequency bin and time frame. During 
enhancement/testing, trained DNN is supplied with the features of the 
noisy speech to predict the coefficients of time-frequency mask. We 
have computed the coefficients of IBM, given as:

Fig. 2. Time-domain waveforms and Power Spectral Densities of Noise sources:Street, Exhibition hall and 32-multitakler babble noise (From left to Right).
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 (3)

Where S(k,ω) and D(k,ω) denote T-F units of the speech and noise 
energies, whereas LC is local criterion. We found that LC=0dB to be 
the finest choice for the mask estimation. The estimated magnitude 
of the clean speech is achieved by multiplying the estimated IBM 
mask with the noisy speech magnitudes. We have extracted the phase 
directly from the noisy speech because human auditory system remains 
unresponsive to small phase errors. Finally, inverse filtering is applied 
to reconstruct time-domain speech.

Speech enhancement formulates noisy speech signals to enhanced 
signals with better perceptual quality and intelligibility and usually is 
considered as estimate of clean speech. Supervised speech enhancement 
maps this process as a supervised learning problem so that mapping 
is determined absolutely from the input data. The proposed method 
contains four modules: feature extraction, training, decoding of DNN 
and waveform reconstruction. In training stage, DNN model is trained 
by using features of the noisy and underlying clean speech signals. 
The acoustic feature sets include the PLP, RASTA-PLP, MFCC, GFCC 
and AMS. We have selected the combination of RASTA-PLP MFCC 
and AMS acoustic features. The features are coupled with related delta 
features. Auto-regressive moving average (ARMA) filter is applied 
to smooth temporal curves of extracted features to improve speaker 
identification rates:

 (4)

Where  shows the feature vector at time frame t,  is filtered 
feature vector and k is the order of filter. A second order (k=2) ARMA 
filter is used. 

A. Network Architecture and Training
The DNN follows the feed-forward structure with five hidden 

layers, every layer contains 1024 hidden units and 64 output units. 
Rectified Linear Unit (ReLU) [24] activation functions are used in 
the hidden layers and also used in output units. ReLU is non-liner in 
the nature; hence more suitable for speech signals. Additionally, if 
considering the sparsity of the activation functions, sigmoid or Tanh 
processes all the neurons, hence make the network dense and costly. 
On the other hand, ReLU do not activate all the neurons and thereby 
makes the activations sparse and more efficient. Moreover, ReLU 
is less computationally expensive than sigmoid and Tanh since it 
involves simpler mathematical operations. Generally, almost all DNN 
based speech enhancement use either RBM or autoencoder based 
pretraining for learning. Yet, for sufficiently large and varied datasets, 
the pretraining stage can be eliminated and in this paper we use random 
initialization to initialize DNNs. Additionally, 20% dropout rate is 
applied to five hidden layers at training stage to decrease the overfitting 
phenomenon. The adaptive gradient descent (AGD) [25] is coupled 
with a momentum term κ to optimize the DNNs. For the first initial few 
epochs, κ rate is fixed at 0.5 but κ rate is increased and fixed at 0.8. The 
network is trained with mean squared error (MSE), as cost function, for 
error-correction. The Dropout regularization [26] is used to manage the 
mismatch conditions. The DNN framework used in this paper is shown 
in Fig. 3, where H1, H2… are a number of hidden layers. Each hidden 
layer contains 1024 neurons. Therefore, the total number of neurons in 
all layers is 5120 which shows a deep neural network.   
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Fig. 3. DNN Training Framework.

III. Experimental Setup

A set of 720 IEEE [27] speech utterances is used during DNN 
training. The testing set contains 300 speech utterances from unknown 
speakers of both genders. We have used a real-world environment 
where multi-noise sources are degrading the target speech utterance. 
A restaurant like environment is considered in the experiments. The 
aim of selecting such noisy environment is two-folds: (a) this kind 
of noisy environment is complex to handle by a speech enhancement 
algorithm, thus appropriate to test the proposed algorithm; (b) this kind 
of noise contains diverse noise sources with different power spectral 
densities shown in Fig. 2. Such noise environment is more practical 
as individuals are exposed frequently to this noise type. The restaurant 
noise in our experiments is the mixture of 32-talker multi-babble 
noise, fan noise and noise originated from striking of the spoons, is 
supposed to be a real-world environment. The noise source contains 
both nonstationary (talking people and striking spoons) and stationary 
(fan noise) conditions. The duration of noise source is approximately 
10 minutes. 

To build the training set, the first-half of noise source is mixed with 
training utterances at -5dB, 0dB, 5dB and 10dB SNRs, respectively. 
The testing mixtures are built by mixing the last half of noise source. 
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We used five DNN models based on number of the hidden layers, 
represented by Δ+DNN1, Δ+DNN2, Δ+DNN3, Δ+DNN4 and Δ+DNN5 
models. For objective speech quality evaluation, we used Perceptual 
Evaluation of Speech Quality (PESQ) [28] whereas to evaluate the 
noise suppression, Segmental SNR (SNRSeg) [29] is used. Short-
Time Objective Intelligibility (STOI) [30] is used to predict speech 
intelligibility. STOI refers to correlation between clean and enhanced 
signals and has been demonstrated to show high correlation to human 
speech intelligibility. To examine the DNNs, two distance measures, 
LLR and WSS, are used. The smaller values of distance measures 
indicate better result whereas the high values of PESQ, SNRseg and 
STOI indicate better performance. In our experiments, we have selected 
Wiener filtering (WF) and non-negative dynamical system (NNDS) as 
competing methods. The Wiener filtering is an unsupervised approach 
where NNDS is a supervised method. The DNNs represent a class 
of supervised methods for speech enhancement. Hence, we have 
compared the DNN approach with both supervised and unsupervised 
methods. 

IV. Results and Discussions 

As declared earlier, the goal of this study is to enhance a noisy 
speech using DNN in conditions similar to real-world environments. 
We have selected restaurant-environment for this study. We measured 
the quality and the intelligibility of the reconstructed enhanced speech 
in terms of the PESQ and STOI. Table I shows PESQ analysis for noisy, 
WF, NNDS and DNN with different layers at four input SNRs. The 
high PESQ scores of DNN show better performance. It is evident that 
speech quality achieved by DNN with four hidden layers (Δ+DNN4) 
are higher than the noisy speech, two competing methods and DNN 
models with three and five hidden layers, that suggests improved 
speech quality of Δ+DNN4. Table II presents the values of SNRSeg 
to indicate the suppression capabilities of DNN and other competing 
methods. Again Δ+DNN4 performed better as compare to Δ+DNN3, 
Δ+DNN5 and competing methods. The noise is effectively reduced 
by DNN. Tables III-IV show performance analysis in terms of LLR 
and WSS. Clearly Tables III-IV indicate that distance between clean 
and reconstructed speech utterances is less for Δ+DNN4. From Tables 
I-IV, it is clear that DNN with four hidden layers performed better as 
compared to DNN with other hidden layers. Therefore, DNN with four 
hidden layers is suggested to improve the quality and intelligibility 
of speech degraded by this particular real-time like noise source. The 
improvements in terms of the PESQ, SNRSeg, LLR and WSS are 
evident in Tables I-IV. 

TABLE I. PESQ Analysis

SNR Noisy WF NNDS DNN3 DNN4 DNN5

-5
0
5
10

1.57
1.77
2.08
2.46

1.61
1.94
2.21
2.63

1.66
2.08
2.39
2.59

1.68
2.19
2.42
2.65

1.72
2.22
2.46
2.68

1.67
2.21
2.42
2.66

Avg. 1.97 2.10 2.18 2.24 2.27 2.24

TABLE II. SNRSeg Analysis

SNR Noisy WF NNDS DNN3 DNN4 DNN5

-5
0
5
10

0.50
1.08
2.30
4.40

1.24
2.18
3.31
5.43

1.54
2.98
4.54
6.29

1.73
3.14
4.93
6.92

1.78
3.21
4.98
7.02

1.70
3.20
4.92
6.93

Avg. 2.07 3.04 3.83 4.18 4.24 4.18

TABLE III. LLR Analysis

SNR Noisy WF NNDS DNN3 DNN4 DNN5

-5
0
5
10

2.07
1.61
1.14
0.82

1.27
1.04
0.78
0.60

1.01
0.91
0.62
0.59

0.77
0.86
0.43
0.52

0.75
0.60
0.33
0.44

0.76
0.71
0.45
0.40

Avg. 1.41 0.92 0.78 0.64 0.53 0.58

TABLE IV. WSS Analysis

SNR Noisy WF NNDS DNN3 DNN4 DNN5

-5
0
5
10

70.72
61.02
53.53
43.03

57.40
50.88
49.31
37.71

56.01
48.53
47.00
35.54

50.21
44.52
42.02
33.24

48.37
43.35
41.22
31.97

49.07
44.15
43.60
32.60

Avg. 57.07 48.82 46.77 42.49 41.22 42.35

Fig. 4. Intelligibility Analysis.

Speech enhancement in order to improve the speech intelligibility 
using STOI measures is presented in Fig. 4. The achieved STOI 
scores with the WF, NNDS and DNN approaches in real-time like 
condition at four SNRs shows that a better performance is observed 
with DNN approach than with the two competing approaches and 
noisy unprocessed speech. Again STOI is computed for three DNN 
models i.e., Δ+DNN3, Δ+DNN4 and Δ+DNN5 and two competing 
approaches. It is obvious from Fig. 4 that Δ+DNN4 achieved the 
highest STOI score as compare to other models and competing 
approaches. The average STOI score is increased from 50% with 
noisy speech to 66.2% with Δ+DNN4 at -5dB SNR. Similarly, 
the average STOI score is increased from 67% with WF to 78% 
with Δ+DNN4 at 0dB SNR. Moreover, the average STOI score 
is increased from 79% with NNDS to 84% with Δ+DNN4 at 5dB 
SNR. By observing the STOI scores, it is evident that DNN 
with four hidden layers (Δ+DNN4) performed well in improving 
speech intelligibility. Fig. 5 shows the MSE cost-function values 
for representing errors at 20 epochs at all input SNRs. We have 
considered one noise source: 32-talkers babble, for example, and 
shown that lowest MSE is achieved at 20th epoch. At low SNRs 
(-5dB and 0dB) a considerable MSE is achieved at epochs greater 
than 16. For higher SNRs (5dB and 10dB), the MSE is greater as 
compared to low SNRs.
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Fig. 5. Objective Cost Function at epochs.

Recently in [31], it has been shown that HIT–FA measure correlates 
well with human intelligibility. The term HIT indicates the percentage 
of correctly classified target-dominant T-F units and FA indicates 
the false alarm or the percentage of wrongly classified interference-
dominant T-F units. A fine estimate of IBM ought to have high HIT 
rate and low FA rate respectively, which guides to high HIT–FA rates. 
We have used HIT–FA rates in our study to indicate the classification 
and estimation errors. Fig. 6 shows the HIT-FA rates for the estimated 
masks for different DNN models. It is evident that Δ+DNN4 has 
achieved high HIT-FA rates. 

Fig. 6. HIT-FA analysis.

In speech enhancement, distortion is a vital parameter that indicates 
the ability of understanding a spoken enhanced speech utterance 
(intelligibility). The distorted utterance would lose vital speech contents, 
which results in loss of the speech intelligibility. Consequently, it is 
vital to perform enhancement of noisy speech in such a way that noise 
is reduced but not at the cost of intelligibility. To examine the speech 
distortion and residual noise, we have conducted spectrogram analysis. 
The spectrograms of the enhanced speech obtained with all processing 
methods are depicted in Fig. 7(A). The spectrograms of WF and NNDS 
have lost some important speech contents, hence provided less speech 
intelligibility as compared to DNN model Δ+DNN4 which is evident in 
the Fig. 7(A). If we note the spectrogram of DNN, we obtained a close 
replica of clean speech spectrogram and important speech contents 
are effectively preserved. Also a low residual noise is observed in the 
spectrogram of DNN output speech. The time-domain waveforms 
of the enhanced speech utterances obtained with all the processing 
methods are depicted in Fig. 7(B). The waveforms of WF and NNDS 
have some residual noise, hence provided less segmental SNR (quality) 
as compared to DNN model Δ+DNN4 which is evident in the Fig. 7(B). 
If we observe, the waveform of DNN is a close replica of clean speech 
waveform and important speech contents are effectively preserved. 

Also a low residual noise is observed in the waveform of DNN output 
speech.

V. Summary and Conclusions 

This paper considered the restaurant noise problem for speech 
enhancement which is identical to real-world environments and many 
noise sources that concurrently degrade quality and intelligibility of 
a target speech. The existing studies on the speech enhancement 
principally focus on the presence of one noise source. However, in 
real-world situations, attempts are made to improve the speech quality 
and intelligibility of speech where many stationary and nonstationary 
noise sources are simultaneously mixed with target speech. To 
address such problem, we have used Deep Neural Networks approach 
and used ideal binary mask (IBM) as a binary classification method 
and target function during training. The mean square error (MSE) 
objective cost function is used during training to reduce errors. 
The experimental results at different input SNRs have confirmed 
the superiority of DNN-based multi-noise speech enhancement in 
terms of PESQ, SNRSeg, LLR, WSS and STOI. Our experimental 
results in particular noisy situations have demonstrated an average 
7% improvement in speech quality as compared to noisy speech. 
Similarly, an average 6.5% improvement in speech intelligibility is 
noted during experiments. Moreover, a large improvement in terms 
of the SNRSeg, LLR and WSS is recorded during experiments, 
shown in Tables II-IV for reference. At low SNRs (-5dB) the DNN 
based speech enhancement in this particular noise source performed 
exceptionally and attained large improvements. The time-varying 
spectral analysis confirmed that the DNN with four hidden layers 
has the capacity to reduce considerable noise and the speech contents 
are preserved to an acceptable level of understanding. The overall 
analysis of DNN architecture has validated that Δ+DNN4 has a great 
potential to deal this noise type as compared to other two competing 
unsupervised and supervised methods.

VI. Future Work 

The greater part of the speech processing algorithms operate 
only with the spectral magnitude, leaving spectral phase unstructured 
and unexplored. With recent advancement in deep neural networks, 
the phase processing became more important as an innovative and 
emergent prospective of the DNN based speech enhancement. The 
authors will develop the DNN with phase estimation in future to test 
the speech intelligibility and quality potentials in the complex noisy 
environments.  
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