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Abstract

Federated learning, a distributive cooperative learning approach, allows clients to train the model locally using 
their data and share the trained model with a central server. When developing a federated learning environment, 
a deep/machine learning model needs to be chosen. The choice of the learning model can impact the model 
performance and the communication cost since federated learning requires the model exchange between clients 
and a central server in several rounds. In this work, we provide an empirical study to investigate the impact of 
using three different neural networks (CNN, VGG, and ResNet) models in image classification tasks using two 
different datasets (Cifar-10 and Cifar-100) in a federated learning environment. We investigate the impact of using 
these models on the global model performance and communication cost under different data distribution that are 
IID data and non-IID data distribution. The obtained results indicate that using CNN and ResNet models provide 
a faster convergence than VGG model. Additionally, these models require less communication costs. In contrast, 
the VGG model necessitates the sharing of numerous bits over several rounds to achieve higher accuracy under 
the IID data settings. However, its accuracy level is lower under non-IID data distributions than the other models. 
Furthermore, using a light model like CNN provides comparable results to the deeper neural network models with 
less communication cost, even though it may require more communication rounds to achieve the target accuracy 
in both datasets. CNN model requires fewer bits to be shared during communication than other models.
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I.	 Introduction

The expansion of information and communication technology has 
increased the availability of data and computing resources, resulting 

in the Big Data era. This increasing data generated in the network 
requires efficient knowledge extraction and processing mechanisms 
to benefit from it. The data generated can be utilized as training data 

to provide the edge devices in the network with intelligence. However, 
traditional machine/deep approaches necessitate the collection of data 
to a central location to train the model and extract knowledge from 
it. Collecting the data to a central location can cause a significant 
transmission delay and raise privacy concerns due to sharing some 
private information through the network. Therefore, traditional 
machine learning approaches that require data collection in a central 
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location face various challenges, such as network communication 
and data privacy [1]. To tackle these issues, Federated Learning (FL) 
was introduced [2] to allow the model to be trained locally at the 
network edge and share the learned model rather than the data. FL is a 
distributive collaborative learning process that allows devices (known 
as clients) to train the model locally using their local data and share 
the trained model with a central server. The central server aggregates 
the received local models to create the global model. The learning 
process in federated learning is performed in rounds where, in each 
round, the central server provides the global model to the clients to 
train the model locally using their data [2]. 

Federated learning technology offers numerous advantages over 
traditional learning methods. It provides for more effective usage 
of network bandwidth and protects data privacy, as raw data is not 
demanded to be transferred to the server. Moreover, federated learning 
can employ the computing resources and diverse datasets on clients’ 
devices to enhance the quality of the global model [3], [4], [5]. With 
these benefits, federated learning can be applied in various areas such 
as healthcare, transportation, IoTs, and mobile applications (such as 
next-word prediction) [6], [7]. 

However, federated learning faces various challenges because of 
its decentralized approach such as quality of the training data, the 
distributed architecture, the type of devices used to train the model, 
and the communication and aggregation mechanisms used; which 
affect the learning process in FL [8]. The clients’ data in FL is non-
Independent and Identically Distributed (non-IID) data due to varying 
device usage and location, as each client’s data is dependent on 
their device usage and location. This means that the assumption of 
the IID data used in machine learning algorithms cannot be applied 
in FL. Therefore, FL encounters the additional challenge of data 
heterogeneity [4], [9]. Furthermore, during FL training, the clients and 
the central server exchange the local and global models in multiple 
rounds. However, this communication process can be a bottleneck due 
to the network’s limited resources [10], [11]. The devices in FL vary 
in their computational power, storage, and network connectivity, and 
this heterogeneity could unbalance the training time and affect global 
model training [12], [13], [14].

Despite federated learning’s potential, most research has focused 
on overcoming challenges like communication efficiency, data 
heterogeneity, and privacy preservation. However, an overlooked 
aspect of FL is the influence of various deep learning models on 
the overall performance and efficiency of FL. Understanding the 
impact of different neural network architectures within FL is crucial 
for optimizing model performance and communication resource 
efficiency.

In contrast to the traditional centralized learning approach, FL 
perform the training in distributed manner on the clients’ devices 
and shares the local models with the central server through the 
network for several rounds. However, sharing these local models can 
be costly when using a deep neural network with many parameters. 
For that, this study aims to investigate the impact of using different 
neural networks on the model performance and communication 
cost, focusing on image classification tasks. Specifically, the research 
intends to evaluate and analyze the performance of a Convolutional 
Neural Network (CNN) model along with two complex variations of it, 
namely Visual Geometry Group (VGG) and Residual Neural Network 
(ResNet), which are widely used by the researchers when evaluating 
their proposed work in image classification tasks [15], [16], [17], [18], 
[19]. These three models are mainly used with Cifar-10 and Cifar-100 
datasets [20]. In this study, we aim to address the following research 
question: Do we need a deeper network in a federated learning 
environment? by studying the performance of VGG-11, ResNet-18, 
and comparing them with a lighter CNN model, that is the same model 

used in the study that proposed the FL approach [2]. We aim to gain 
a deeper understanding of the benefits and drawbacks of using these 
models in FL environment.

The main contributions of this study are as follows:

1.	 Conducting an empirical study that investigates the impact of 
utilizing three different neural networks (CNN, ResNet-18, and 
VGG) for image classification task in a FL environment using two 
widely recognized datasets (Cifar-10 and Cifar-100). 

2.	 We performed a comparative experiment and analyzed the 
performance of these three models under different data distribution 
settings (IID and non-IID), providing valuable insights into their 
behavior in different FL settings. 

3.	 We studied and analyzed these models’ performance and associated 
communication costs with different batch sizes and epoch values. 

4.	 We provide insights into the trade-offs between model accuracy 
and communication efficiency. 

5.	 Our findings shed light on the suitability of each neural network 
for FL, enabling researchers and practitioners to make informed 
decisions when selecting a learning model for their work.  

6.	 To best of our knowledge, this study is the first to explore how 
the choice of different neural network models impacts the 
performance of federated learning.

The remainder of this work is organized as follows: Section ‎II 
presents the literature review and highlight the datasets and local 
models in image classification tasks in federated learning. Section ‎III 
show the system model. In section IV, we show the neural networks 
design, and the experiment settings. Section V shows the experiments 
results, while section VI shows the discussion. The conclusion and 
future work are provided in section VII. 

II.	 Literature Review 

Numerous studies have attempted to tackle the FL challenges using 
various techniques. For instance, Zhong et al.  [21] uses a hierarchical 
clustering algorithm to overcome the non-IID data challenge by 
clustering the clients based on their model similarity and merge 
similar clusters. While Wu et al. [22] addresses communication cost 
and non-IID data challenges by using a threshold value to determine 
the importance of the local model to be uploaded to the server or 
skipped. Other studies [23], [24], [25] focus on non-IID data challenges 
by aiming to reduce client drift using different techniques such as  
decoupling and correction the local drift, rescaling the gradients, 
primal-dual variable that can adapt to data heterogeneity. The studies 
in [15], [16], [17] address communication challenges by reducing the 
number of bits exchanges using different compression techniques, 
such as Quantization and Count Sketch. The work in [18] improves the 
communication efficiency of FL by parallelizing the communication 
with computation to cover the communication phase with the training 
phase. Asynchronous technique is to overcome the communication 
bottleneck in FL [26], and another work uses partial synchronous 
technique to accelerate the training process in FL over the two-tier 
network using relay nodes to aggregate the model partially and reduce 
the communication rounds required [19]. The work of Li et al. aims to 
tackle the diversity in the computational capacity between devices and 
avoid waiting for slow devices by approximating the optimal gradients 
with a complete local training model using the Hessian estimation 
method to achieve the approximation, based on the heterogeneous 
local updates that has been received [27]. Another work uses a tier 
approach to overcome the latency caused by slow clients, by grouping 
clients into the same tier based on their response time to overcome 
the system heterogeneity [28]. Zeng et al. [29] proposes an energy-
efficient bandwidth allocation and client selection scheme. The work 
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aims to reduce energy consumption while maximizing the selection 
of clients participating by adapting to both channel states and device 
computation capability when selecting clients and allocating the 
channel for them. Jebreel et al. [30] propose a mechanism to overcome 
the label-flapping attack in the federated learning environment to 
overcome malicious clients flipping their labels to poison the global 
model. Their work clusters clients based on their gradient parameters 
and analyzes the clusters to filter any potential threat. A novel backdoor 
attack in FL is introduced by Zhang et al.  [31]. Their approach enables 
the attacker to optimize the backdoor trigger using adversarial training 
to enhance its persistence within the global training dynamics. In their 
work, they study the performance of existing techniques to overcome 
their attack and show their limitations.

These studies addressing FL challenges commonly use image 
classification tasks as their application when evaluating their 
proposed methods with different learning models. According to [20], 
[32], the most widely used datasets to test the model performance in 
FL are image datasets, and image classification tasks being the most 
commonly employed applications in FL. Furthermore, the study in [4] 
indicates that image datasets are the most used in FL. 

CNN learning model is used in the study that propose FL [2] to 
evaluate its performance with MNIST [33] dataset. Many studies [21],  
[23], [26] use the same learning model when evaluating their proposed 
work, on different datasets such as CIFAR-10, CIFAR-100, and MNIST. 
Others have opted for a deeper neural network, such as VGG and 
ResNet, mainly when using Cifar-10 and Cifar-100 as their training 
dataset [15], [16], [17]. 

Table I shows various learning models and the datasets used to 
evaluate the performance in the FL environment. The table highlights 
that deeper network such as VGG and ResNet used different datasets 
such as Cifar-10 and Cifar-100, which include colored images, unlike 

the MNIST datasets that are gray-colored images and widely used with 
simpler learning models. However, some research also uses Cifar-10 
and Cifar-100 with a simpler model, such as CNN. The table indicates 
that CNN, ResNet, and VGG are commonly used with Cifar-10 and 
Cifar-100 datasets. Therefore, this study aims to investigate the 
performance of the three aforementioned learning models on the 
Cifar-10 and Cifar-100 datasets in a federated learning environment. 

TABLE I. Learning Models and Datasets Used at Different Studies in 
Federated Learning Environment

Model Dataset Ref.

CNN

Cifar10 [21], [23], [25], [18], [26], [28]
Cifar-100 [23]
MNIST [21], [23], [25], [28], [29], [30]

Fashion MNIST [25], [26], [28]

ResNet

Cifar-10 [22], [15], [16], [17], [18], [19], [27], [30], [31]
Cifar-100 [15], [17], [18], [26], [27]
FEMNIST [17], [31]

Tiny-ImageNet [23], [31]

VGG
Cifar-10 [22], [15], [18], [24]
Cifar-100 [22], [24]

MLP
MNIST [16], [18]

Fashion MNIST [27]

Logistic 
regression

MNIST [19]
Cifar-10 [19]

Despite the extensive research addressing various challenges 
in federated learning, the impact of different learning models on 
federated learning performance has not been thoroughly investigated. 
Table I shows that some studies utilized more than learning model, 
however these models were utilized with different datasets. As shown 
in the Table II, the studies did not compare the impact of different 

TABLE II. Summary of the Literature Studies

Ref. Focus Methodology No. of Models for 
Same Dataset

Comparison 
between models

Hyper-parameter 
Tuning (Epoch-Batch)

[21] Non-IID Hierarchical clustering algorithm 1 𝑿 𝑿

[22]
Communication cost and 

Non-IID
Select model update 2 𝑿 𝑿

[23] Non-IID Decoupling and correcting local drift 1 𝑿 𝑿
[24] Non-IID Rescaling the gradient 1 𝑿 𝑿
[25] Non-IID Primal-dual variable to adapt to data heterogeneity 1 𝑿 𝑿
[15] Communication cost Compression 2 𝑿 𝑿
[16] Communication cost Compression 1 𝑿 𝑿
[17] Communication cost Compression 1 𝑿 𝑿

[18]
Communication 

efficiency
Parallelizing communication with computation 𝑿 𝑿

[26]
Communication 

bottleneck
Asynchronous technique 1 𝑿 𝑿

 [19]
Accelerating training 

process
Partial synchronous technique using relay nodes to aggregate 

the model partially
𝑿 𝑿

[27] Computational capacity
Approximating the optimal gradients with a complete local 

training model
1 𝑿 𝑿

[28] Latency Tier approach 1 𝑿 𝑿

[29] Energy 
Select client based on device computation capability and 

channel states
1 𝑿 𝑿

[30] Security
Cluster clients based on gradients parameter and filter any 

potential threat
1 𝑿 𝑿

[31] Security Optimize attack trigger through an adversarial adaptation loss 1 𝑿 𝑿

Ours
Impact of Learning 
Models in Federated 

Learning
Evaluation of various deep learning models 3 ü ü
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deep learning models on the performance of federated learning. Even 
when multiple models are utilized, they are often used with different 
datasets, which makes direct comparisons difficult. Additionally, these 
studies did not thoroughly investigate the effects of hyper-parameter 
tuning, such as varying epochs and batch sizes, on model performance 
and communication efficiency. Selecting the learning model is essential 
to federated learning, as it impacts both model performance and 
communication cost. Therefore, an evaluation that compares multiple 
neural networks on the same datasets while considering hyper-
parameter variations is important and is the focus of this study. Our 
study fills these gaps by evaluating the performance of various deep 
learning models within a Federated Learning framework, providing a 
unique contribution to the existing body of knowledge.

III.	System Model 

In this section, we will provide a detailed explanation of the system 
model used in our study. This includes the principles and mechanisms 
of FL, the utilized aggregation algorithm, and the network architecture 
that we used.

A.	Federated Learning
FL is a distributed collaborative learning process that was proposed 

by Google researchers in 2016 [2].  It is different from distributed 
(on-site) learning in that, in the latter, the central server provides the 
clients with an initial or pre-trained model, which the clients use to 
train their personalized models using their data. In this type of learning 
approach, there is no sharing of data or information [8], [34], [35].

In FL, there is a fixed set of Clients C, where each client c has its own 
datasets dc, and at each round a fraction R of the clients C is selected 
to participate in this round to train the model [2].  Fig. 1 illustrates the 
FL architecture, where the central server sends the initial model to 
the participating clients. These clients then use this model to train a 
local model using their dataset. Afterward, the clients send the trained 
models to the server. The server then aggregates all the received local 
models using an aggregation mechanism. The process will be repeated 
for several rounds until a target is reached [2]. Typically, FL aims to 
minimize the objective function shown in (1):

	 (1)

Where C is the total number of clients, pc ≥ 0 and , the  pc 
term define the impact of each client on the global model, where there 
are two natural settings existing which are: , where 
d represents the total data sample of all clients and dc represents the 
data sample for client c, and Fc is the local objective function of client 
c [2], [7]. 

Local dataset

Local learning

Local Data

Local Model

Learning process

Global Model Aggregation

Global Model
UpdateModel    Upload

Fig. 1. The federated learning architecture.

In FL, the central server plays a vital role in providing an 
initial model, receiving updated local models from participating 
clients, aggregating these received local models, and subsequently 
disseminating a new global model to the participating clients. The 
most commonly used aggregation scheme in this type of learning 
is called Federated Averaging (FedAvg). FedAvg involves averaging 
the local stochastic gradient descent (SGD) updates. This method is 
usually implemented in a few general steps as follows [2], [7], [8]:

1.	 The server sets up the initial global model.

2.	 The server selects the participating clients (R, C), and sends the 
global model to them.

3.	 The clients that receive the global model train the received model 
using their local dataset. The most used technique is using SGD to 
compute the update. 

4.	 The clients train the model for some epochs and upload the trained 
local model to the server.

5.	 The server then aggregates all the received local models using an 
averaging aggregation mechanism based on the clients’ dataset 
size to create a new global model.

6.	 The steps from 2 to 5 are repeated for several rounds until a 
predefined target is reached. 

Algorithm 1 (FedAvg):
The C Clients are indexed by c.

η: learning rate.

B: Batch size.

E: Local epochs.

Server executes:
    Initialize the initial model ω0

    for each round t = 1, 2, 3, … do

        m ← max (R.C, 1)
        Ct ← (Select random set of m clients)
        for every client c ∈ Ct in parallel do

             ← ClientUpdate (c, ωt)  ...
            mt ← 

            ωt+1 ← 

ClientUpdate(c, ω): // run on client c
     β ← Spilt client dataset into batches of size B

     for each local epoch i from 1 to E do
          for batch b ∈ β do
               ω ← ω − η ∇ l (ω; b)
     return ω to the server

Algorithm 1 illustrates the process of the FedAvg algorithm 
where the (Server executes) section shows the steps that the server 
performs. In contrast, the (CleintUpdate) section illustrates the 
process that are performed at each client. The clients train a local 
model using a deep/machine learning approach and send the locally 
trained model to the server.  

B.	Network Architecture 
The network design used in this study for FL is a centralized 

architecture. In this architecture, there is a central server S and a set of 
clients C, where each client c has its own local dataset dc. The central 
server is responsible for initializing the global model and selecting the 
participating clients (R.C) from the clients set C. For this work, the 
central server selects the participating clients randomly. 
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In this network, each participating client ci receives the global model 
from the central server and trains it locally using its own dataset dc for 
a predefined local epoch. After the completion of training, the local 
model is shared with the central server for global aggregation. The 
central server applies the FedAvg aggregation scheme to aggregate 
the local models received from all participating clients. Then, the 
process of selecting clients and providing the global model is repeated. 
The process will continue for several communication rounds. The FL 
architecture used in this work is shown in Fig. 1.

IV.	Methods

This section presents the local learning model implemented 
by the federated learning clients and the experimental settings. It 
covers the local model architecture and the specific experimental 
parameters employed. 

A.	Local Model Design 
In this subsection, we will discuss three deep learning models, 

namely CNN, ResNet, and VGG, that are utilized in a federated 
learning environment for image classification tasks. We will provide a 
general overview of their concepts and architecture in this subsection. 

1.	Convolutional Neural Network
CNN is a deep learning approach that can be utilized for tasks such 

as speech recognition and computer vision [36], [37]. CNN typically 
comprises three primary types of layers: convolutional, pooling, and 
fully connected layers. The convolutional layer is used for extracting 
features from the data. The pooling layer, on the other hand, reduces 
the size of the output from the convolutional layer and combines 
similar features to avoid redundancy. Finally, the fully connected 
layer establishes connections between the previous layer’s output 
and the subsequent layer’s input [38], [39], [40]. There are different 
well-known CNN architectures such as LeNet, AlexNet, GoogleNet, 
ResNet, VGG, which differ in terms of the used layers, the number of 
layers, the activation function used, and other factors [41], [38], [37]. 
The CNN model architecture used in this study is adopted from [2] 
and includes two convolutional layers, each followed by a max pooling 
layer, a fully connected layer, with ReLU activation function, and final 
SoftMax output layer.

2.	Visual Geometry Group
The VGG model is a deep convolution model developed by the 

Visual Geometry Group [42]. To enhance the learning process, VGG 
uses a small convolution filter (3x3), which increases the depth of the 
network [42], [43]. The VGG has three (3x3) convolutional layers, which 
are equivalent to having a single (7x7) convolutional layer. However, 
VGG uses three (3x3) convolutional layers to reduce the number of 
parameters as it contains more ReLU layers (one after each convolution 
layer), which makes the decision function more discriminatory [42], 
[44]. VGG has different variations depending on the number of layers 
used (VGG-11, VGG-13, VGG-16, and so on). The VGG-11 model consists 
of two stacks of convolution layers and a Max pool layer, followed by 
three stacks of two convolution layers and a Max pool layer, followed 
by three fully connected layers, resulting in having eight convolution 
layers and three fully connected layers [42], [45].

3.	Residual Neural Network
ResNet is a deep neural network that was proposed by He et al. 

in 2015 for image detection [46]. In ResNet, the input of the layer is 
added to the output of the residual mapping, which can contain two 
or more layers. Fig. 2 shows that a shortcut connection is established 
between the input and output of the residual mapping along with 
an additional operation. This shortcut connection helps the network 

learn more effectively, thereby improving its performance. ResNet 
is commonly used for image classification and object detection [47]. 
ResNet has different variations depending on the number of layers 
used (ResNet-18, ResNet-34, and so on). ResNet-18 comprises 17 
convolution layers and a fully connected layer. A batch normalization 
layer and activation function can follow each convolution layer. 
The first convolution layer is followed by a max pooling layer. The 
network also includes eight sets of two convolutional layers, then an 
average pooling layer, and finally a fully connected layer with SoftMax 
activation function. The residual map is applied between the output of 
the even-numbered stack of convolution layers and the output of the 
next stack. The residual function is shown in (2):

	 (2)

Where y represents the output vector of the layer, F(x) represents 
the residual mapping to be learned, and x represents the input vector. 

Weight Layer

ReLU

ReLU

Weight Layer

F(X)

X

X
identity

F(X) + X

Fig. 2. Residual learning: a building block.

B.	Experimental Setup
In this study, we evaluate the performance of the three learning 

models (CNN [2], ResNet-18 [46], and VGG-11 [42]), for image 
classification tasks using two datasets, Cifar-10 and Cifar-100 [48]. 
For ResNet-18, we replaced the batch normalization layers with group 
normalization as suggested and evaluated in [49]. The sizes of the 
three models transmitted by each client are presented in Table III. 
Cifar-10 dataset consists of 60,000 images that are categorized into 
10 different classes. Each class has 6,000 images. Out of these 60,000 
images, 50,000 are used for training and 10,000 for testing purposes. 
Similarly, the Cifar-100 dataset contains 60,000 images that have 
been classified into 100 distinct classes. Each class has 600 images. 
Out of these 60,000 images, 50,000 are used for training and 10,000 
for testing purposes. In this study, we distributed the dataset among 
100 clients in such a way that each client received 500 samples for 
training similar to [2], [22], [25]. We tried different settings and 
reported the best results obtained, we conducted the experiment over 
300 rounds, with a learning rate of 0.01 and SGD as optimizer. At each 
round, we randomly selected 10 clients to participate as many studies 
used these settings [2], [25]. We performed the test on the client’s 
side every five rounds. Following we show the experimental results 
of the three models, that highlight the model training accuracy and 
communication costs to reach a predefined target. We designed two 
cases to study the models’ performance based on the data distribution. 
The first is the IID data distribution, and the second is the non-IID 
data distribution, following a similar setting as in [2].  In the IID data 
case, each client has data from all classes, where each client holds 
50/5 samples from each class from the Cifar-10/Cifar-100 datasets. 
In the non-IID data setting, each client has data from a few classes, 
2/20 classes, where each client holds 250/25 samples from the selected 
class from the Cifar-10/Cifar-100 datasets.
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TABLE III. Model Size of the Three Models Transmitted by Each Client

Dataset CNN ResNet-18 VGG-11

Cifar-10 8.22MB 41.61MB 104.87MB

Cifar-100 8.4MB 41.87MB 107.25MB

V.	 Results

In this section, we present the experimental results of the three 
models with different numbers of epochs and batch sizes using two 
different datasets as we increase the computation per client. We 
compare the testing accuracy of the three models, communication bits 
exchanges and number of rounds to reach a predefined target accuracy. 

A.	Performance Comparison on Testing Accuracy
In this subsection, we show the performance of the three deep 

learning models using two cases when the clients have: (1) IID data and 
(2) non-IID data. Each case is evaluated using two different datasets, 
Cifar-10 and Cifar-100, and we varied the batch sizes and epoch values 
for each dataset.

1.	IID Data Setting
To evaluate the performance of the three models, we tested them 

by varying the number of epochs and batch sizes. Fig. 3 illustrates 
the performance of the three models in the Cifar-10 and Cifar-100 
dataset under the IID settings with an increase in batch size and local 
epoch value. In Cifar-10 the Fig. 3 (a) demonstrates that increasing 
the number of local epochs and decreasing batch sizes improves the 
model’s performance for CNN model. Similar results were obtained 
in ResNet-18 model and VGG-11 model under the same settings, as  
shown in Fig. 3 (b) and Fig. 3 (c). The ResNet model converge faster 
with the increase of the local epoch value as shown in Fig. 3 (b), both 
batch sizes perform comparably well when trained with the same 
epochs value, indicating that the epoch count plays a crucial role in 
enhancing model performance. The VGG model in Fig. 3 (c) show 
a slow start especially with the 1-epoch configurations, however it 
obtains a higher accuracy with the increase of the global rounds with 
the 5-epoch configurations. In CNN and VGG-11 models, the best 
performance is achieved when the epoch size is 5, and the batch size 
is 16. While ResNet-18 performs best when the batch size =16 in all 
epoch values. We compared the performance of the three models at 
epoch=5 and batch size=16, 32, as shown in Fig. 3 (d). The VGG-11 
model started slowly, but its performance improved with increasing 
rounds compared to ResNet-18 and CNN models. ResNet-18 and CNN 
provide comparable performance, as shown in Fig. 3 (d). 

In Cifar-100 datasets, the performance of the three models under 
the IID settings is shown in Fig. 3. The models were evaluated with 
different numbers of epochs and batch sizes. Fig. 3 (e) shows the 
performance of the CNN model. The results indicate that the CNN 
shows better performance with a batch size of 16 in this setting. 
ResNet-18 and VGG-11 have similar performance, and they perform 
better with a batch size of 16 for different epoch sizes, as demonstrated 
in Fig. 3 (f) and  Fig. 3 (g). The ResNet model converge faster with the 
increase of the local epoch value as shown in Fig. 3 (f), with the smaller 
batch size 16 outperforms the larger batch size 32. Also, the VGG 
model converge faster with the increase of the local epoch value as 
shown in Fig. 3 (g), with obtaining higher accuracy with the 5-epoch 
and 10-epoch configurations compared to the 1-epoch configurations 
for all batch sizes. We compared the performance of the three models 
at epoch=5 and batch size=16, 32, which is illustrated in Fig. 3 (h). The 
results indicate that VGG-11 performs worse compared to ResNet-18 
and CNN models. Among these three models, CNN performs the best 
under the specified settings, as illustrated in Fig. 3 (h).

2.	Non-IID Data Setting
In the case of non-IID data settings, Fig. 4 illustrates the 

performance of the three models when tested using the Cifar-10 
dataset and Cifar-100. In Cifar-10 the performance of all models 
improves as the number of local epochs increases and the batch size 
decreases as shown in Fig. 4 (a), Fig. 4 (b), and Fig. 4 (c). For all 
three model we observe that configurations with more epochs per 
round lead to higher accuracy, regardless of batch size. The best 
performance was achieved when the number of local epochs was 
equal to 5 for all models. However, the VGG-11 model performed 
the worst in non-IID settings compared to the CNN and ResNet-18 
models, as illustrated in Fig. 4 (d). In Cifar-100 the performance of 
all models improves as the number of local epochs increases and the 
batch size decreases as shown in Fig. 4 (e), Fig. 4 (f), and Fig. 4 (g). For 
all three model we observe that configurations with more epochs 
per round lead to higher accuracy, regardless of batch size, with a 
slight edge for the smaller batch size 16. The best performance was 
achieved when the number of local epochs was set to 5 for CNN 
and VGG-11 models. However, in non-IID settings, CNN and ResNet 
with batch size = 16 perform better than the VGG-11 model that 
need more rounds to converge, as illustrated in Fig. 4 (h).

B.	Performance Comparison on Communication Cost
Communication cost is an important metric to evaluate FL, as the 

training process in FL is known to be a distributed process between 
clients, and requires clients to share their local models with a central 
server in multiple rounds through the network. For that, the number 
of rounds needed to reach a target accuracy and the number of bits 
sent by the clients are both an essential metric in FL. In this subsection, 
we evaluate the performance of the three learning models to achieve a 
predefined target accuracy in terms of the number of communication 
rounds (RoA@XX) and training bits exchanged from clients through 
the network. Table IV and Table V show the results for Cifar-10 and 
Cifar-100 datasets under the IID data settings, respectively. The “-” 
symbol means the target accuracy could not be obtained within the 
given number of communication rounds. However, the number of bits 
uploaded from clients during training is still reported.

Fig. 5 (a) illustrates the communication costs associated with 
different learning models for the CIFAR-10 and CIFAR-100 datasets. 
The figure shows that the CNN model consistently has the lowest 
communication cost across various configuration settings. In contrast, 
the VGG-11 model demonstrates the highest communication cost 
under all configurations. Notably, ResNet-18 falls between CNN and 
VGG-11 in terms of communication cost. Although ResNet-18 requires 
fewer communication rounds to achieve the target accuracy as shown 
in Table IV, and Table V, these rounds are more costly compared to 
those of the CNN model. This indicates that the CNN model can 
achieve the target accuracy with significantly lower communication 
overhead, making it a more efficient choice for federated learning 
scenarios.

To sum up, the three models perform better when the data is IID 
data. In the Cifar-10 and Cifar-100 datasets, ResNet-18 shows faster 
convergence to reach the target accuracy compared to CNN and 
VGG-11 in most cases. However, since FL is a distributed learning 
process that shares a locally trained model instead of raw data 
to preserve privacy and provide an efficient communication, it is 
essential to consider the difference in the model weight of these 
three models. Although ResNet-18 requires fewer rounds, the 
number of bits transmitted is more than that of the CNN model as 
shown in Fig. 5.
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(a) CNN model for IID settings in Cifar-10 (b) ResNet-18 model for IID settings in Cifar-10

(c) VGG-II model for IID settings in Cifar-10 (d) The three models for IID settings in Cifar-10 with E=5

(e) CNN model for IID settings in Cifar-100 (f) ResNet-18 model for IID settings in Cifar-100

(g) VGG-II model for IID settings in Cifar-100 (h) The three models for IID settings in Cifar-100 with E=5
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Fig. 3. The test accuracy of the three models for IID setting in Cifar-10 and Cifar-100 dataset.



Regular Issue

- 13 -

(a) CNN model for non-IID settings in Cifar-10 (b) ResNet-18 model for non-IID settings in Cifar-10

(c) VGG-II model for non-IID settings in Cifar-10 (d) The three models for non-IID settings in Cifar-10 with

(e) CNN model for non-IID settings in Cifar-100 (f) ResNet-18 model for non-IID settings in Cifar-100

(g) VGG-II model for non-IID settings in Cifar-100 (h) The three models for non-IID settings in Cifar-100 with E=5

0.0

0 50 100 150 200 250 300

0.1

0.2

0.3

0.4

A
cc

ur
ac

y

A
cc

ur
ac

y

Round

0 50 100 150 200 250 300
Round

0 50 100 150 200 250 300
Round

0 50 100 150 200 250 300
Round

0 50 100 150 200 250 300
Round

0 50 100 150 200 250 300
Round

CNN E :1 B :16

CNN E :10 B :16

CNN E :10 B :32

CNN E :1 B :32
CNN E :5 B :16

CNN E :5 B :32

CNN E :1 B :16

CNN E :10 B :16

CNN E :10 B :32

CNN E :1 B :32
CNN E :5 B :16

CNN E :5 B :32

VGG-11 E :1 B :16

VGG-11 E :10 B :16

VGG-11 E :10 B :32

VGG-11 E :1 B :32
VGG-11 E :5 B :16

VGG-11 E :5 B :32

VGG-11 E :1 B :16

VGG-11 E :10 B :16

VGG-11 E :10 B :32

VGG-11 E :1 B :32
VGG-11 E :5 B :16

VGG-11 E :5 B :32

CNN E :5 B :16

VGG-11 E :5 B :16

VGG-11 E :5 B :32

CNN E :5 B :32
ResNet-18 E :5 B :16

ResNet-18 E :5 B :32

CNN E :5 B :16

VGG-11 E :5 B :16

VGG-11 E :5 B :32

CNN E :5 B :32
ResNet-18 E :5 B :16

ResNet-18 E :5 B :32

ResNet-18 E :1 B :16

ResNet-18 E :10 B :16

ResNet-18 E :10 B :32

ResNet-18 E :1 B :32
ResNet-18 E :5 B :16

ResNet-18 E :5 B :32

0 50 100 150 200 250 300
Round

ResNet-18 E :1 B :16

ResNet-18 E :10 B :16

ResNet-18 E :10 B :32

ResNet-18 E :1 B :32
ResNet-18 E :5 B :16

ResNet-18 E :5 B :32

0.5

0.0

0.1

0.2

0.3

0.4

0.5

A
cc

ur
ac

y

0.0

0.1

0.2

0.3

0.4

0.5

A
cc

ur
ac

y

0.0

0.1

0.2

0.3

0.4

A
cc

ur
ac

y

0.00

0.05

0.10

0.15

0.20

0.25

A
cc

ur
ac

y

0.00

0.02

0.04

0.06

0.08

0.10

0.14

0.12

0 50 100 150 200 250 300
Round

A
cc

ur
ac

y

0.00

0.05

0.10

0.15

0.20

0.25

A
cc

ur
ac

y

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Fig. 4. The test accuracy of the three models for non-IID setting in Cifar-10 and Cifar-100 dataset.
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VI.	Discussion

In this study, we have assessed the performance of three different 
models, CNN, ResNet-18, and VGG-11, in image classification tasks 
under two different settings. Our findings suggest that VGG-11 has a 
slower start and necessitates more communication rounds to obtain the 
same accuracy as CNN and ResNet-18. Although VGG-11 eventually 
reaches a similar performance level to CNN and ResNet-18, it requires 
more communication rounds, and these rounds are costly as the VGG-
11 model size is higher than CNN and ResNet-18. Moreover, VGG-
11 did not perform well in the case of non-IID data setting. On the 
other hand, ResNet-18 performs well and converge quickly, requiring 
fewer communication rounds than CNN in some cases. However, it 
is noteworthy that ResNet-18 communication rounds cost more than 
CNN communication rounds, as the ResNet-18 model requires sending 
more bits when uploading the model. 

The CNN model used in this study is a lighter model compared with 
ResNet-18 and VGG-11; however, it provides comparable performance 
compared to the other two models in terms of accuracy obtained in 
the predefined number of rounds. In some cases, more communication 
rounds may be required to obtain the same accuracy as ResNet-18; 
however, these rounds are less costly than ResNet-18 rounds since 
CNN requires fewer bits for exchanging the model compared to 
ResNet-18 and VGG-11. When training a model, obtaining high 

accuracy is necessary and is considered an essential evaluation 
criterion. However, as FL is a decentralized approach that requires 
sharing clients’ model with the central server, the communication 
cost is also considered a vital evaluation metric. Therefore, we must 
consider the number of rounds and the client bits sent to reach these 
results. When we use the communication costs as an evaluation metric 
to evaluate the performance of the three models, CNN provides better 
results than ResNet-18 and VGG-11. The CNN model exchanges fewer 
bits than ResNet-18 and VGG-11, providing comparable accuracy. 

Based on our analysis of the performance of the three models 
and their associated communication costs, we recommend using a 
lighter model (such as CNN in [2]) in FL, since federated learning is 
a learning process that requires sharing locally trained models with 
a central server for several rounds through the network. Moreover, 
it is essential to determine the local epoch value since the devices in 
FL are limited in resources. Setting the local epoch to a high value 
does not indicate enhancing the model performance in these settings. 
Therefore, we recommend using an adaptive local epoch that can 
start with a higher value and decrease after a certain point to avoid 
overfitting and enhance the global model performance.

Hence, to answer the research question, Do we need a deeper 
network in a federated learning environment? Our answer is that in 
FL, it is necessary to consider different factors before choosing the 

TABLE IV. Communication Rounds and Training Bits Exchanges to Reach a Target Accuracy for IID Data Settings in Cifar-10

Model CNN ResNet-18 VGG-11
Epoch 1 5 10 1 5 10 1 5 10
Batch 16 32 16 32 16 32 16 32 16 32 16 32 16 32 16 32 16 32
RoA@60 190 285 35 65 40 80 105 140 45 60 40 55 - - 75 140 155 105
Communication 
Cost (GB)

15.63 23.44 2.87 5.34 3.29 6.58 43.70 58.27 18.73 24.97 16.65 22.89 314.62 314.62 78.65 146.82 162.55 110.11

TABLE V. Communication Rounds and Training Bits Exchanges to Reach a Target Accuracy for IID Data Settings in Cifar-100

Model CNN ResNet-18 VGG-11

Epoch 1 5 10 1 5 10 1 5 10

Batch 16 32 16 32 16 32 16 32 16 32 16 32 16 32 16 32 16 32

RoA@30 240 - 95 120 105 - 205 210 185 - 220 - - - - - - -

Communication 
Cost (GB)

20.16 25.2 7.98 10.08 8.82 25.2 85.84 87.93 77.46 125.6 92.12 125.6 318.7 318.7 318.7 318.7 318.7 318.7
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Fig. 5. The communication cost for the different models using Cifar-10/Cifar-100 dataset to reach target accuracy (=60%, =30%).
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local model since the clients’ devices are limited in resources and data, 
and the learning process is performed in rounds. We may not need 
a deeper neural network model since we need to consider not only 
model accuracy but also communication cost, and it may cost more to 
share a deeper model during training. 

VII.	   Conclusion and Future Work 

Federated learning is a collaborative learning approach where 
the clients and server exchange training models for several rounds 
through the network to reach a predefined target. The choice of the 
learning model affects the model performance and the communication 
costs. Researchers have been faced with the decision of which 
learning model to choose when using FL for image classification 
tasks; several studies chose a deeper neural network model, such 
as VGG and ResNet, to evaluate their proposed work, while others 
chose a light model, such as CNN. In this study, we aimed to answer 
the question, “Do we need a deeper network in a federated learning 
environment?” Since FL is a decentralized approach, the model 
weight must be considered along with the model performance when 
choosing a neural network model since the model will be shared 
during training through the network. To answer this question, we 
conducted an empirical study investigating the impact of using three 
different neural networks in a FL environment (CNN, VGG-11, and 
ResNet-18). Our study evaluates the three models under different data 
settings (IID and non-IID) using two datasets (Cifar-10 and Cifar-100). 
We showed the performance of these models with varying numbers 
of local epochs and batch sizes. The results indicate that using CNN 
provides comparable results compared to the other models, with less 
communication cost; however, in some cases, it may require more 
rounds to reach the predefined target, but the communication cost 
(GB) is less than the other two models, making it a more practical 
choice for FL applications where communication efficiency is critical. 
We observed significant performance degradation for all models 
under non-IID settings compared to IID settings, highlighting the 
importance of addressing data heterogeneity in FL. Furthermore, our 
analysis revealed that using a 5-epoch configuration with a batch size 
16 resulted in the best performance across all three models compared 
to other configurations. Our study provided valuable insights into the 
trade-offs between model accuracy and communication efficiency, 
suggesting that CNN offers a balanced approach by maintaining high 
performance while minimizing communication costs. Our findings 
indicate that training a model using a CNN model requires fewer 
network resources to train the FL model to reach accuracy similar to 
that obtained using deeper models.

For the future research direction, we aim there is a need to analyze 
the performance of FL on client device energy consumption and 
computational resources using different models and investigate if 
they are applicable on the client devices that are limited in resources. 
Also, investigate the effect of applying different compression method 
with deep neural networks. Furthermore, investigating the effects of 
introducing an adaptive local epoch size. By initially setting a higher 
epoch size that ultimately decreases after a certain point, to enhance 
the model’s accuracy while simultaneously reducing costs.
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