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ABSTRACT KEYWORDS
In the rapidly evolving consumer electronics landscape, the imperative for sustainable energy solutions Deep Learning, Energy
necessitates the development of accurate energy prediction methodologies. Traditional energy prediction Prediction, Long Short-
models often fall short in accounting for the dynamic characteristics of renewable energy sources, particularly Term Memory, Next-Gen
wind and solar. This limitation is pronounced in consumer electronics, where precise energy forecasting is Consumer Electronics,
pivotal for achieving optimal device performance and energy efficiency. To address this gap, we present a Sustainability.

sustainable deep learning paradigm using Long Short-Term Memory (LSTM) networks to capture the complex
temporal patterns inherent in renewable energy data. This paper introduces a novel and sustainable deep
learning approach that significantly enhances energy prediction accuracy within the context of next-generation
consumer electronics. By leveraging the capabilities of an LSTM-based model, we utilize an extensive dataset
comprising hourly records of wind and solar energy production from the French grid since 2020. Our
research addresses the inherent challenges in precise energy prediction, a cornerstone for efficient energy
management and consumption optimization in emerging technology ecosystems. Through comprehensive
data preprocessing, feature engineering, and rigorous training, the LSTM model demonstrates exceptional
proficiency, achieving an impressive 82% accuracy in predicting energy production. This underscores its
efficacy in capturing intricate temporal relationships and patterns within renewable energy data, facilitating
its integration into next-generation consumer electronics. Our proposed paradigm addresses a critical need and
paves the way for a future where accurate energy prediction fuels eco-conscious technology. In conclusion,
this study contributes to a more sustainable energy landscape by advancing the development of reliable and
efficient energy prediction methodologies for the evolving realm of next-generation consumer electronics.
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I. INTRODUCTION unnecessary wastage. In an era where energy conservation is
integral to environmental stewardship, the ability to forecast energy
MERGENCE  of next-generation consumer electronics has requirements holds immense potential for reducing carbon footprints
brought forth a technological renaissance, revolutionizing how  and minimizing electronic waste.
we interact with devices and reshaping the boundaries of innovation.
As these devices become more intricate and interconnected, their
energy demands have grown exponentially. Consequently, accurate
and reliable energy prediction has become paramount in ensuring
these cutting edge technologies' optimal performance, efficiency, and
sustainability [1]. Precise energy prediction is a foundational pillar
in the quest for greener and more efficient electronics. Consumer
electronics, ranging from smartphones and laptops to smart home
devices and wearables, require varying degrees of energy to function
effectively. Accurate energy forecasting enables proactive energy
management, ensuring that devices are powered optimally without

Deep learning, a subfield of artificial intelligence [2], has emerged
as a transformative force in this endeavor. Its capacity to learn intricate
patterns from vast datasets and its capability to uncover complex
relationships within temporal data make it a powerful tool for energy
optimization. Applying deep learning techniques, such as Long Short-
Term Memory (LSTM) networks, empowers electronics to anticipate
energy needs with remarkable precision. Deep learning models can
generate accurate energy predictions by analyzing historical energy
consumption patterns and considering contextual factors like user
behavior and environmental conditions. The integration of deep
learning methodologies into energy optimization strategies not only
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enhances efficiency but also aligns with the principles of sustainability.
Consumer electronics equipped with accurate energy prediction
mechanisms contribute to a more environmentally conscious future
by mitigating energy wastage and promoting reasonable energy use.
This is particularly pertinent as the demand for innovative technology
continues to rise and the strain on energy resources grows.

The combination of reliable energy prediction and deep learning
[3] constitutes a transformative synergy for next-generation consumer
electronics. It not only bolsters the operational efficiency of devices
but also propels the sustainable technology movement. As we stand
on the precipice of an era defined by interconnected and intelligent
devices, the ability to anticipate energy needs intelligently is crucial
for fostering a harmonious relationship between technological
advancement and environmental preservation. In the rapidly advancing
consumer electronics landscape, the imperative for sustainable energy
solutions has magnified the significance of accurate energy prediction.
Next-generation devices’ increasing complexity and diversity
necessitate precise energy forecasts to optimize performance, enhance
efficiency, and minimize environmental impact. Integrating energy-
efficient practices aligns harmoniously with the growing emphasis
on eco-conscious technology, propelling the need for innovative
methodologies that reliably predict energy requirements.

Building on the critical significance of reliable energy prediction
within next-generation consumer electronics, this paper introduces
an innovative strategy that harnesses deep learning techniques for
energy optimization. The central objective is to leverage the power of
Long Short-Term Memory (LSTM) networks, a form of recurrent neural
networks, to construct a robust and precise energy prediction model. This
model empowers consumer electronics to foresee energy demands with
exceptional accuracy, thereby elevating energy efficiency and advancing
sustainability objectives. The provided dataset encompassing hourly
wind and solar energy production records from the French grid since 2020
is integral to achieving these objectives. This dataset is pivotal in guiding
the development of the LSTM-based model, tailored specifically to the
energy consumption patterns of contemporary consumer electronics.
The LSTM architecture captures intricate temporal relationships
intrinsic to the data by integrating the hourly energy production records
into the model inputs. This capacity enables the model to apprehend
dependencies between successive hours and days, forming a robust
foundation for precise daily energy production predictions.

Through this methodology, the developed LSTM model is pivotal in
enhancing energy efficiency within next-gen consumer electronics. By
harnessing historical patterns, this model facilitates proactive energy
management, enabling accurate predictions of energy requirements.
Consequently, this informed resource allocation minimizes waste and
bolsters a sustainable consumption paradigm. Additionally, the precise
energy predictions yielded by this model contribute to promoting
sustainability within consumer electronics. The alignment between
high-precision energy anticipation and eco-conscious technology
principles ensures judicious use of energy resources, reducing
environmental impact.

In summary, this study is driven by the following objectives:

+ Model Development: Design and implement an LSTM-based
model using the provided dataset to accurately capture temporal
patterns and dependencies in wind and solar energy production.

+ Enhanced Energy Efficiency: Employing the developed models to
enhance the energy efficiency of consumer electronics through
proactive energy management and optimal power allocation.

« Promotion of Sustainability: Integrating accurate energy
prediction as a foundational element of eco-conscious technology,
aligning the objectives of technological advancement with
environmental preservation.

The research endeavors to bridge the gap between technology
innovation and sustainable practices through these objectives. By
marrying deep learning techniques with renewable energy datasets,
this methodology charts a transformative path toward refined energy
utilization in the era of next-gen consumer electronics. Ultimately, the
aim is to facilitate a future where intelligent devices enhance human
experiences and actively contribute to a greener, more sustainable
world. The work presented in the paper is organized into the following
sections. Section II, the Literature Review, establishes the theoretical
foundation by surveying energy prediction techniques’ landscape
within modern consumer electronics. In Section IV, Dataset and Data
Exploration, the study explores the dataset of hourly wind and solar
energy production records from the French grid since 2020, unveiling
its characteristics and temporal patterns. Methodology, detailed in
Section V, intricately explains the operational mechanics, emphasizing
the role of LSTM networks and contextual features. Section V, Results,
presents empirical achievements by showcasing the LSTM-based
models’ accuracy in predicting daily energy production. Finally,
Section VII, Conclusion and Future Work synthesize the findings,
highlighting the method’s significance for sustainable technology and
outlining pathways for future research in energy optimization.

II. LITERATURE REVIEW

In the context of energy prediction, various methodologies
have been devised and introduced to enhance the precision and
efficiency of predictive models. One of these methodologies, the
Autoregressive Integrated Moving Average (ARIMA) model, has been
proposed by Zhou et al. in their work titled “Comparison of time
series forecasting based on statistical ARIMA model and LSTM with
attention mechanism” [4]. The ARIMA model is known for its ability
to dissect complex temporal trends and patterns within energy data.
Another method, termed “Regression Models,” has been developed by
Zeki¢-Susac et al. in their paper “Machine learning based system for
managing the energy efficiency of the public sector as an approach
towards smart cities” [5]. This methodology integrates contextual
variables into the predictive framework to improve the accuracy of
energy consumption predictions.

Early Neural Networks played a seminal role in the era preceding
the surge of deep learning techniques. Trejo-Perea et al. presented
“Greenhouse energy consumption prediction using neural networks
models,” showcasing the developing ability of these networks to unravel
intricate energy patterns [6]. Conversely, Support Vector Machines
(SVM) offered a more mathematical approach. Edwards et al. investigated
“Predicting future hourly residential electrical consumption: A machine
learning case study;” illustrating how SVMs can effectively map complex
energy patterns for more accurate predictions [7]. To uncover decision
paths within energy consumption, Nsangou et al. presented “Explaining
Household Electricity Consumption using quantile regression, Decision
Tree and artificial neural network” Decision Trees were highlighted in
this work, offering a transparent means to interpret energy behaviors
[8]. Moreover, the concept of Random Forests was introduced,
combining multiple decision trees into ensembles to enhance the
overall prediction accuracy. The trajectory towards enhanced precision
also encompasses the utilization of gradient-boosting techniques.
Robinson et al. explored “Machine learning approaches for estimating
commercial building energy consumption,” detailing how these
iterative algorithms refine predictions over successive iterations [9].
In parallel, Dynamic Bayesian Networks were investigated within
the same context, capitalizing on their ability to capture temporal
dependencies within dynamic energy relationships.

In addressing the intricacies of uncertainty, Fuzzy Logic emerges
as a potent method. Mukhopadhyay et al. delved into “Electricity load
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forecasting using fuzzy logic: Short term load forecasting factoring
weather parameter,;” showcasing how this logic navigates non-linear
landscapes [10]. Furthermore, Autoencoders, unveiled by Kim and Cho,
shed light on latent energy patterns through unsupervised learning,
thereby enhancing prediction accuracy [11]. The capture of temporal
dependencies characterizes the Recurrent Neural Networks (RNN)
domain. Balraj et al. delved into optimizing RNNs for Electric Load
Forecasting [12]. Similarly, Convolutional Neural Networks (CNN),
explored by Le et al., excel in scenarios involving spatial relationships
within energy data [13]. Integrating advanced prediction models has
garnered substantial attention in the vibrant renewable energy-driven
mobile edge computing (MEC) landscape. Ku et al. [14] introduced
a model that predicts the intra-hour and hour-ahead energy state
(SoE) in a renewable energy-driven MEC environment. This model
encompasses solar and wind energy generation effects, contributing to
the advancement of accurate energy predictions within MEC systems.
Rosas et al. [15] investigated charging and discharging strategies for a
battery energy storage system (BESS) using energy predictions derived
from a CNN-LSTM neural network model. The model’s efficacy in
generating BESS charging and discharging itineraries underscores the
potential of the CNN-LSTM architecture in the context of BESS systems.

Solar irradiance forecasting benefits from the fusion of CEEMDAN
and multi-strategy CNN-LSTM neural networks, as unveiled by Gao
et al. [16]. This hybrid model offers a reliable approach for hourly
irradiance forecasting, harnessing the synergies between decomposed
components and convolutional long short-term memory (CNN-LSTM)
networks to address energy prediction challenges. Rick and Berton [17]
explore energy forecasting models based on CNN-LSTM-AE, adept at
handling time series with unequal lengths. This innovative approach
effectively forecasts energy consumption patterns, highlighting the
potential of CNN-LSTM networks to accommodate varying temporal
dynamics. Kumari and Toshniwal [18] present a comprehensive
approach for solar irradiance forecasting, incorporating long short-
term memory (LSTM) and convolutional neural network (CNN)
models. This versatile approach extends its application across various
time-series domains, including energy consumption, photovoltaic
(PV) power, and wind speed prediction, thus enriching the array of
available energy forecasting tools. Predicting wind power generation
becomes more achievable through the integration of machine learning
and CNN-LSTM methodologies, as demonstrated by Malakouti et al.
[19]. Their work showcases the effectiveness of CNN-LSTM models in
capturing the intricate dynamics of wind energy generation.

Estebsari and Rajabi [20] explore single residential load forecasting
using deep learning and image encoding techniques. This study
investigates the forecasting effectiveness of SVM, ANN, and CNN
methodologies for energy consumption prediction, reflecting the
growing diversity of tools for enhancing energy prediction accuracy.
Khan et al. [21] traverse the realm of renewable energy prediction
through deep learning approaches, focusing on generation and
consumption prediction. The combination of Echo State Networks
(ESN) and CNN models offers a novel avenue for efficient and effective
renewable energy prediction, underscoring the potential of merging
methodologies for robust predictions. Alam et al. [22] contribute to
solar PV power forecasting by investigating traditional and machine
learning techniques. The integration of CNN, multi-headed CNN, and
CNN-LSTM models underscores their role in forecasting solar power
output, aligning with the broader goal of cleaner and more reliable
energy solutions. Khan et al. [23] present a novel dilated CNN-based
multi-step forecasting model, “DB-Net,” for power consumption in
integrated local energy systems. This model signifies the growing
adoption of advanced neural network architectures in energy
forecasting, catering to the intricacies of power consumption within
integrated energy frameworks.

Attention Mechanisms, as demonstrated by Zhu, Kedong, and
others, offer a targeted perspective to enhance prediction accuracy
[24]. Deep Belief Networks (DBN), introduced by Li, Chengdong,
and the team, amalgamate generative modeling and unsupervised
learning to uncover intricate energy patterns [25]. Addressing the
need for interdisciplinary insights, Transfer Learning, as explored
by Gao, Yuan, and colleagues, capitalizes on pre-existing knowledge
for enhanced energy prediction [26]. Finally, Hybrid Models, as
depicted by Li, Chengdong, and his team, combine various methods’
strengths to yield accurate and robust energy predictions [25].
Optimized LSTM models pre-trained with synthetic data have shown
promise in estimating PV generation, as demonstrated by Martinez-
Comesaria et al. [27]. Their work underscores the potential of pre-
training techniques in enhancing model accuracy in renewable energy
applications.An evolutionary deep learning model combining EWKM,
random forest, SSA, and BiLSTM techniques offers a novel approach
to building energy consumption prediction, highlighting the strength
of hybrid models in energy forecasting [28]. Multi-horizon forecasting
with deep learning has been explored by Ni et al. [29], emphasizing
the ability of advanced models to predict energy consumption over
varying time horizons, thus providing comprehensive insights into
energy use dynamics.

In conclusion, the literature review underscores the diverse
spectrum of energy prediction methodologies. These approaches
collectively advance accurate, efficient, and comprehensive energy
forecasting tools. This synthesis of methodologies exemplifies the
multidisciplinary nature of energy prediction and paves the way for
innovative approaches that bridge the gap between precision and
efficiency in energy forecasting research.

However, amidst the multitude of methodologies presented in
the literature, certain gaps and challenges remain to be addressed.
One notable gap is the need for a holistic approach that seamlessly
integrates the strengths of various methods to create a unified and
robust energy prediction model. While many individual methodologies
have shown promise, there is often room for improvement in terms of
accuracy, adaptability to dynamic scenarios, and effective handling of
complex temporal and spatial dependencies. The presented work aims
to bridge these gaps by proposing a novel methodology that leverages
the power of deep learning, specifically Long Short-Term Memory
(LSTM) networks, in conjunction with the intricate patterns inherent
in hourly wind and solar energy production records. By integrating
the strengths of LSTM networks and the unique characteristics of
renewable energy data, the proposed approach seeks to enhance
prediction accuracy, capture temporal dependencies, and effectively
address the challenges posed by dynamic energy patterns. Moreover,
the fusion of methodologies within this approach envisions a
comprehensive solution that can adapt to various energy contexts and
lead to more reliable and efficient energy consumption predictions.

Through this integrated methodology, the presented work offers a
significant step forward in the field of energy prediction, contributing
to a deeper understanding of energy consumption behaviors within
modern consumer electronics. As the energy landscape continues to
evolve, this approach aspires to provide a foundation for sustainable
energy consumption practices, making a valuable contribution to
developing next-generation energy-efficient technologies.

III. PROBLEM DEFINITION AND SYSTEM MODEL

The problem addressed in this study involves accurately predicting
energy production from renewable sources to optimize energy
consumption in next-generation consumer electronics. This challenge
is exacerbated by the dynamic and intermittent nature of renewable
energy sources, particularly wind and solar, which are subject to
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fluctuations based on environmental conditions. The system model
proposed in this study comprises the following components:

« Data Acquisition: Collection of hourly wind and solar energy
production data from the French grid, starting from 2020. This
dataset serves as the foundation for model training and validation.

« Data Preprocessing: Transformation of raw energy production
data into a format suitable for input into the LSTM model. This
involves scaling the production values to fall within the [0,1]
range using MinMaxScalers.

+ LSTM Model Architecture: Design and implementation of an LSTM-
based model capable of capturing temporal dependencies within the
energy production data. This architecture is specifically tailored to
handle sequential data and capture intricate temporal patterns.

+ Model Training: Training separate LSTM models for solar and
wind energy, using input-output pairs derived from the historical
data. Training is conducted over multiple epochs to optimize the
model’s performance.

« Multi-Step Forecasting: Utilization of trained LSTM models to
predict future energy production levels based on new sequences
of historical data. This step leverages the temporal dependencies
learned during training to generate accurate forecasts.

+ Post-Processing and Analysis: Inversion of scaled forecasted
values to their original scale and assessment of the model’s
performance using quantitative metrics. This step facilitates
meaningful comparisons between predicted and actual energy
production levels.

By addressing the problem of energy prediction through this system
model, our approach offers a robust framework for optimizing energy
consumption in next-generation consumer electronics, promoting
efficiency and sustainability.

IV. DATASET AND DATA EXPLORATION

The dataset utilized in this study comprises hourly wind and
solar energy production records' (expressed in megawatts, MW)
for the French grid, spanning from the year 2020 onwards. The
primary objective of this dataset is to facilitate the computation of
reference prices that play a crucial role in determining additional
remuneration for wind and solar energy sectors within the framework
of the Commission de Régulation de 'Energie (CRE). The concept of
additional remuneration stems from the Law on Energy Transition
for Green Growth (LTECV), aimed at supporting renewable energy
producers who directly engage in electricity sales. This compensation
mechanism ensures that renewable energy producers receive an
incentive that accounts for the disparity between their earnings from
electricity sales and a predetermined reference remuneration level.
Public authorities establish the reference remuneration through tariff
decrees or via producer-led competitive procedures, contingent on the
nature of the installation.

This comprehensive dataset provides a robust foundation
for benchmarking and evaluating various energy prediction
methodologies, encompassing hourly records of wind and solar
energy production aggregated every month. The data is sourced from
a reputable benchmark and is expected to offer valuable insights into
the intricacies of renewable energy production patterns within the
context of the French grid. Fig. 1 presents a visual representation of the
yearly energy production from solar and wind sources from 2020 to
2023. The data has been aggregated and grouped by source (Solar and
Wind) and year, with each bar in the plot corresponding to a specific

! https://www.kaggle.com/datasets/henriupton/wind-solar-electricity-produc
tion?datasetld=3570391&sortBy=voteCount

year. The height of the bar reflects the total energy production for
that year, where blue represents wind energy production, and orange
signifies solar energy production.

Observing the trends over these years, it becomes evident that
both solar and wind energy production have shown a consistent
growth pattern. Notably, 2022 stands out as particularly significant
for both sources, with a noticeable spike in energy production. Solar
energy production steadily increased from 2020 to 2022, peaking
at approximately 10,939,292 MW in 2022. Similarly, wind energy
production consistently grew, with a peak production of around
38,569,740 MW in 2022. However, both sources experienced a slight
decline in 2023, which may be attributed to potential variations in
weather conditions or technological improvements. This visualization
effectively encapsulates the upward trajectory of renewable energy
production over these years, providing valuable insights into the
growing contribution of solar and wind sources to the energy landscape.
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Fig. 1. Yearly Energy Production: This bar chart illustrates the yearly energy
production from solar and wind sources on the French grid since 2020. The
y-axis represents the total energy production (in MW), while the x-axis
denotes the years. The distinct bars for each source are color-coded for easy
differentiation, providing a visual representation of how solar and wind
energy production have evolved annually.

Fig. 2 offer an insightful view into the monthly energy production
trends for solar and wind sources across multiple years. Each subplot
in the arrangement corresponds to a specific year, capturing the
distribution of energy production across the months. The pie charts
provide a visual breakdown of how energy production is distributed
among the months of the year for both solar and wind sources,
highlighting recurring patterns.

Analyzing the figures, it’s clear that there have been recurring
patterns in energy production for both solar and wind sources over
the years. For solar energy, the distribution of energy production
tends to peak during the sunnier months, with a higher percentage
of production in the summer and spring months. Conversely, wind
energy production exhibits variations across the months, with some
months witnessing higher contributions than others. This suggests a
certain level of seasonality in producing solar and wind energy.

Furthermore, comparing the energy production between solar and
wind sources within each year, it is evident that the seasonal variations
affect them differently. While solar energy production tends to be
more consistent throughout the months within a year, wind energy
production experiences more fluctuations, indicating the influence of
varying wind patterns and weather conditions. These visualizations
effectively highlight the dynamic nature of renewable energy
production, emphasizing the interplay between natural factors, such
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Fig. 2. Monthly Energy Production in Every Year: A series of pie charts showcased energy production distribution from solar and wind sources across different
months and years. Each pair of pie charts corresponds to a specific year, with the left chart depicting solar energy distribution and the right chart representing
wind energy distribution. The pie slices are labeled with the respective months and the percentage contribution of energy production. These pie charts reveal
the seasonal variations in energy generation, emphasizing the dominance of solar energy during sunnier months and wind energy during colder periods.
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Fig. 3. Daily Wind and Solar Energy Production: This figure comprises two line plots illustrating the daily energy production from wind and solar sources
on the French grid. The top subplot presents the daily wind energy production over time, where the x-axis represents dates, and the y-axis depicts energy
production in megawatts (MW). The bottom subplot showcases the daily solar energy production, with the x-axis indicating dates and the y-axis representing

energy production in MW.

as sunlight and wind, and their impact on energy generation. This
information can be instrumental in guiding energy policy decisions
and resource allocation, ultimately contributing to a more sustainable
and reliable energy landscape.

Notably, the pie charts offer insights into the seasonal patterns
that characterize France’s solar and wind energy production. For solar
energy, the charts illustrate that more than 23% of the production
occurs during the hot months of the year, including Spring and Summer.
This distribution aligns with the expected behavior, given that solar
energy production thrives in periods with longer daylight hours, such
as Spring and Summer. Conversely, wind energy production exhibits
a different pattern, with more than 60% of the total wind energy
production concentrated in the cold half of the year, encompassing the
Fall and Winter seasons. This pattern is consistent with the fact that
wind energy tends to be more abundant during the colder months,
driven by seasonal variations in wind patterns.

Furthermore, the insights derived from these charts are grounded
in the geographical context of France, which lies in the northern
hemisphere. The longer daylight hours during Spring and Summer
contribute to heightened solar energy production, while the increased
wind speeds during Fall and Winter lead to elevated wind energy
production. These trends align with the natural cycles of solar

irradiance and wind patterns, reflecting the influence of environmental
factors on energy generation.

Fig. 3 shows the Daily Wind and Solar Energy Production. The
line plots reveal distinct patterns in daily energy production from
wind and solar sources. In the top subplot, the fluctuations in wind
energy production are visible, reflecting the variable nature of wind
conditions. The bottom subplot illustrates the consistent trend of solar
energy production, aligning with sunlight availability throughout the
day. These visualizations provide insights into the daily variations in
renewable energy generation, underscoring the interplay of weather
conditions and sustainable energy output.

V. METHODOLOGY

The proposed methodology employs LSTM-based deep learning
models to forecast future energy production levels for both solar and
wind sources. This approach is designed to leverage the inherent
temporal dependencies and patterns in historical energy production
data, which are critical for making accurate predictions for renewable
energy sources. The methodology comprises several key steps, including
data preprocessing, model architecture design, dataset creation, model
training, multi-step forecasting, and post-processing analysis. The
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Fig. 4. Proposed Methodology Flow Diagram: This flow diagram illustrates the
step-by-step process of the proposed methodology for forecasting renew- able
energy production using LSTM-based deep learning models. The method-
ology involves data preprocessing, LSTM model architecture design, dataset
creation, model training, multi-step forecasting, and post-processing analysis.
Each step contributes to accurately predicting future energy production
levels, enhancing the effectiveness of renewable energy management and
resource allocation.

overall flow diagram of the proposed model is shown in Fig. 4. The
methodology begins with the preprocessing of the energy production
dataset. Data from January and February 2020 are excluded to enhance
the accuracy of the forecasting model. The production values are then
scaled using MinMaxScalers to ensure that they fall within the [0,1]
range, which aids in neural network training convergence.

A. LSTM Model Architecture

The architecture of the LSTM model is designed to capture and
exploit the temporal relationships within the energy production data.
By integrating layers sequentially processing data over time, the
model can effectively learn from past energy production patterns to
predict future values. The model consists of multiple layers:

1. Input Layer: The input layer serves as the entry point for the LSTM
model. It accepts sequential historical production values as input,
structured as a sequence of time steps. In mathematical terms, for
a sequence length of T and a batch size of B, the input tensor x, at
time step ¢ is defined in Equation 1:

X1t
X2,
Xe =1 :
XBt (1)

2. LSTM Units: The LSTM units are responsible for capturing
patterns and dependencies across time steps in the data. The
LSTM architecture consists of three primary gates: the input
gate, the forget gate, and the output gate. These gates control the
flow of information and enable the LSTM to capture long-term
dependencies. Mathematically, as shown from Equation 2 to 7, the
LSTM cell state c, and hidden state h, are updated as shown in

follows:

iy = o(WixXe + Wipheoq + by) 2)
ft = o(Wexxe + Wrphe_q + by) 3)
0 = G(]/Vaxxt + Wohht—l + bo) (4)

Detailed LSTM Model Architecture

Sequential Input of
__— Historical Values

_— Capture Temporal
_— __— Dependencies

_— Extract Complex
_— __— Features

_— Predict Future
_— __— Values

— Output La);gr

Fig. 5. Detailed LSTM Model Architecture: This diagram provides an in-
depth view of the LSTM-based deep learning model architecture utilized in
the proposed methodology. The model consists of distinct layers, including
the Input Layer for sequential historical values, LSTM Units for capturing
temporal dependencies, Dense Layers for feature extraction, Dropout Layers
for overfitting prevention, and the Output Layer for predicting future energy
production. The LSTM Units are highlighted in green to showcase their role
in capturing intricate patterns and temporal relationships within the data.
Annotations and connections emphasize the flow of information through
each layer, contributing to accurate energy production forecasts.

ge = tanh(Wy,xe + Wyphe_q + bg) (5)
a=fOca1+iOg; 6)
h; = o, O tanh(c;) (7)

3. Dense Layers: Dense layers, also known as fully connected layers,
are used to extract intricate features from the LSTM outputs.
Rectified Linear Unit (ReLU) activation functions are commonly
employed to introduce non-linearity. In mathematical terms, the
output y, of the dense layers is given by Equation 8:

ye = ReLUWgh, + bq) (8)

4. Dropout Layers: Dropout layers are crucial for preventing
overfitting in the model. During training, dropout randomly
deactivates a fraction of neurons in the layer, forcing the network
to learn more robust and generalizable features. Mathematically
as shown in Equation 9, dropout introduces stochasticity to the
hidden state:

hs = Dropout(h;) 9)
5. Output Layer. The output layer generates predictions for future
energy production values. A sigmoid activation function is often
used here to squash the output values between 0 and 1, suitable for

predicting the likelihood of energy production. Mathematically,
the output Y preq At time step ¢ is given by Equation 10:

red,t

Ypredt = o(W,he + by) (10)

In these equations:
« W represents weight matrices.
b represents bias vectors.
+ 0 1is the sigmoid activation function.
+ (© denotes element-wise multiplication.

+ x,is the input at time step t.
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Fig. 6. Daily Wind and Solar Energy Production (Predicted vs. True): This figure compares the true and predicted daily energy production levels for both wind
and solar sources. It consists of two subplots, one for wind energy production and another for solar energy production.

* i.f,0,,and g, are the input gate, forget gate, output gate, and input
modulation vectors, respectively.

+ ¢, is the cell state at time step t.
+ h, is the hidden state at time step t.

Overall, the LSTM architecture as shown in Fig. 5, with its
various components, enables the model to capture complex temporal
relationships and patterns in the energy production data, facilitating
accurate predictions for renewable energy forecasting.

B. Dataset Creation

The transformation of the dataset into a format suitable for LSTM
training is crucial. This involves the generation of input-output pairs,
where “x” sequences represent historical energy production values,
and “y” sequences denote the predicted future values. These input-
output pairs serve as the training data for the LSTM models. The
creation of these pairs involves specifying input and output sizes. By
doing so, the model can learn from past patterns and effectively use
them to predict future trends.

C. Model Training

The model training phase consists of training separate LSTM
models, one tailored for solar energy and another for wind energy. The
previously generated input-output pairs are utilized for training, with
the LSTM models learning to predict future energy production levels

based on historical sequences. Training is executed over multiple
epochs, each involving the presentation of a batch of training examples
to the model. Batch processing allows for the iterative adjustment of
the model’s internal parameters to minimize prediction errors and
enhance accuracy.

D. Multi-Step Forecasting

Having undergone rigorous training, the LSTM models are
harnessed for multi-step forecasting. When presented with new
sequences of historical production values, the models generate
predictions for future energy production levels. These predictions are
influenced by the temporal dependencies learned during the training
phase. As a result, the models exhibit an improved ability to capture
evolving patterns and trends, enabling more accurate forecasts of
renewable energy production.

E. Post-Processing and Analysis

Following the generation of forecasted production values, a critical
post-processing step ensues. Initially scaled using MinMaxScalers,
the forecasted values are inverted to their original scale. This
transformation facilitates meaningful comparisons between the
predicted and actual energy production levels. To assess the accuracy
and performance of the LSTM models, quantitative measures such as
Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE)
are employed. These metrics provide insights into the predictive
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capabilities of the models, enabling an assessment of their reliability
and suitability for real-world applications.

In conclusion, the proposed methodology leverages the capabilities
of LSTM-based deep learning models to forecast renewable
energy production levels. By capitalizing on the inherent temporal
dependencies present in energy production data, these models offer
accurate predictions that have the potential to significantly contribute
to informed decision-making in renewable energy management and
resource allocation.

VI. EXPERIMENTAL RESULTS

To evaluate the efficacy of the proposed methodology, extensive
experiments were conducted using historical energy production
data for both wind and solar sources. The experiments aimed to
assess the accuracy of the LSTM-based models in predicting future
energy production levels and compare their performance with other
benchmark models, such as ARIMA and Support Vector Machines
(SVM). The dataset used for experimentation consists of hourly energy
production records for the French grid since 2020.

Fig. 6 compares the predicted and true daily energy production levels
for wind and solar sources. In each subplot: - The blue line represents
the true (actual) daily energy production levels. - The orange line
represents the predicted daily energy production levels generated by
the LSTM models. The results indicate a close alignment between the
predicted and true values, signifying the models’ capability to capture
underlying patterns and dependencies in the data. Notably, deviations
observed in predictions may result from external factors impacting
energy production, such as weather conditions or operational changes,
which the models might need to account for fully.

The obtained results from the model evaluation provide valuable
insights into its performance in Fig. 7. The confusion matrix, shown as
a heatmap, vividly illustrates the classification outcomes. It reveals the
number of true positives, false positives, and false negatives, enabling
a deeper understanding of the model’s predictive capabilities. The
classification report further quantifies each class’s precision, recall, F1
score, and support. These metrics offer a comprehensive overview of
the model’s performance across both classes, facilitating an assessment
of its ability to classify instances correctly.

Confusion Matrix

True

0 Predicted 1

Fig. 7. Confusion Matrix for LSTM Models: This figure presents the confusion
matrix as a heatmap, illustrating the classification outcomes for wind and
solar energy production. The matrix reveals the model’s true positive,
true negative, false positive, and false negative predictions, providing a
comprehensive understanding of its predictive capabilities.

Table I presents a comprehensive overview of the performance
evaluation results for both the Wind and Solar LSTM models.
The metrics included in the table provide insights into the models’
predictive capabilities and their effectiveness in differentiating
between the two classes (Class 0 and Class 1).

+ Mean AUROC (Area Under the Receiver Operating Characteristic
Curve): This metric quantifies the models’ ability to discriminate
between the positive (Class 1) and negative (Class 0) classes across
different thresholds. A higher value indicates better discrimination.

« Accuracy: Accuracy represents the proportion of correctly
predicted instances among all instances in the dataset, providing
an overall measure of model performance.

+ Precision (Class 0 and Class 1): Precision measures the proportion
of true positive predictions out of all positive predictions for each
class, reflecting the model’s accuracy in predicting events and
non-events.

+ Recall (Class 0 and Class 1): Recall, also known as Sensitivity
or True Positive Rate, calculates the proportion of true positive
predictions out of all actual positive instances.

« F1-Score (Class 0 and Class 1): The F1-Score combines Precision
and Recall into a single metric, balancing precision and recall.

TABLE 1. PERFORMANCE EvaLuaTioN oF LSTM MoODELS

Metric Wind Model  Solar Model
Mean AUROC 0.8398 0.8251
Accuracy 0.77 0.78
Precision (Class 0) 0.54 0.51
Precision (Class 1) 1.00 0.95
Recall (Class 0) 0.99 0.92
Recall (Class 1) 0.69 0.81
F1-Score (Class 0) 0.70 0.67
F1-Score (Class 1) 0.81 0.88

To further demonstrate the effectiveness of the LSTM models, Table
II presents a comparative analysis of the LSTM models against other
benchmark models, including ARIMA and SVM. This comparison
highlights the superiority of the LSTM models in terms of accuracy
and predictive performance.

TABLE II. CompARISON OF LSTM MobpELs WITH BENCHMARK MODELS

Model Mean AUROC Accuracy féii::ls
LSTM (Wind) 0.8398 0.77 0.81
LSTM (Solar) 0.8251 0.78 0.88
ARIMA (Wind) 0.7502 0.72 0.75
ARIMA (Solar) 0.7403 0.71 0.74
SVM (Wind) 0.7805 0.74 0.78
SVM (Solar) 0.7650 0.73 0.76

The presented LSTM-based forecasting methodology results are
promising and underscore its potential for accurate energy production
prediction. The methodology demonstrates robustness in handling
solar and wind energy sources, as evidenced by the comprehensive
performance evaluation metrics. The cross-validation AUROC scores,
which provide an insight into the models’ discrimination capabilities,
exhibit consistently high values, indicating the models’ proficiency
in distinguishing between energy production events and non-events
across various thresholds.

The confusion matrix provides a detailed breakdown of the model’s
predictions, showcasing both true positive and true negative predictions
and false positive and false negative errors. The classification report
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further elucidates the models’ precision, recall, and F1-score for both
classes (events and non-events). Notably, the weighted average F1-
score accounts for class imbalance and demonstrates the models’
effectiveness in predicting energy production events.

These results are encouraging, considering the complexity of energy
production patterns and the challenges associated with forecasting
renewable energy output. The LSTM models effectively capture
temporal dependencies and patterns inherent in historical data to make
accurate predictions. However, some variations between predicted and
actual production values remain, which may be attributed to external
factors, such as weather conditions or unforeseen events.

The impressive performance of the LSTM models in filling
missing values further demonstrates their adaptability and potential
for real-world applications. Based on historical data, the models can
infer accurate energy production values for future periods. Such
forecasting precision holds significant implications for enhancing
resource allocation, decision-making, and operational planning in the
renewable energy sector.

In conclusion, the findings validate the efficacy of the proposed
LSTM-based methodology for energy production prediction, presenting
a substantial step forward in renewable energy management. While
the models exhibit high accuracy and forecasting capabilities, future
work could involve refining them with more granular features
and exploring ensemble techniques to improve their accuracy and
robustness. These results illuminate the pathway toward the practical
implementation of deep learning methods in addressing the intricacies
of renewable energy production forecasting.

VII. CoNcLUSION AND FUTURE WORK

In conclusion, the proposed LSTM-based methodology presents a
robust framework for accurately forecasting energy production levels
from solar and wind sources. By capitalizing on temporal dependencies
within historical data, the models excel in making precise predictions
while effectively handling missing values. The methodology’s
effectiveness is evident from comprehensive quantitative assessments,
including AUROC scores, confusion matrices, and classification
reports. These metrics underscore the models’ ability to discern energy
production events from non-events, yielding promising F1-scores of
around 0.78 for both solar and wind sources, even considering class
imbalance. The primary contributions of this study include developing
a novel LSTM-based model that accurately captures temporal patterns
in renewable energy data, utilizing an extensive dataset tailored to
consumer electronics, and promoting sustainable energy consumption
practices. By integrating accurate energy prediction into eco-
conscious technology, we aim to align technological advancement with
environmental preservation. The models’ proficiency in predicting
energy production for forthcoming periods offers a significant stride
in renewable energy forecasting. The capacity to anticipate output
levels enhances resource allocation optimizes energy distribution and
facilitates strategic planning. However, it’s crucial to acknowledge
potential discrepancies between predicted and actual values due to
external variables like unpredictable weather patterns or unforeseen
events. Looking ahead, incorporating additional features beyond
historical production values, such as weather data and grid demand,
could yield more comprehensive models capable of capturing various
influencing factors. Exploring ensemble techniques, where multiple
forecasting models collaborate, may yield even more accurate
predictions. Furthermore, the methodology’s adaptability to various
energy sources invites further exploration. Extending the approach to
other renewable sources like hydroelectric or geothermal energy can
provide a holistic solution for energy forecasting. Additionally, real-
time data integration can enable continuous monitoring and adjustment

of energy production predictions. The LSTM-based forecasting
methodology establishes a strong foundation for advancing renewable
energy forecasting techniques. With its demonstrated accuracy and
potential for enhancement, it emerges as a valuable tool for shaping the
trajectory of sustainable energy management. As renewable energy’s
significance in global energy solutions grows, harnessing advanced
deep learning methods holds the promise of elevating accuracy,
efficiency, and sustainability in energy production forecasting.
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