
- 1 -

Please cite this article as:  
G. Jeon, I. Ahmed, S. Han. A Sustainable Deep Learning Paradigm for Reliable Energy Prediction in Next-Gen Consumer Electronics, International Journal 
of Interactive Multimedia and Artificial Intelligence, (2025), http://dx.doi.org/10.9781/ijimai.2025.02.005

Keywords

Deep Learning, Energy 
Prediction, Long Short-
Term Memory, Next-Gen 
Consumer Electronics, 
Sustainability.

Abstract

In the rapidly evolving consumer electronics landscape, the imperative for sustainable energy solutions 
necessitates the development of accurate energy prediction methodologies. Traditional energy prediction 
models often fall short in accounting for the dynamic characteristics of renewable energy sources, particularly 
wind and solar. This limitation is pronounced in consumer electronics, where precise energy forecasting is 
pivotal for achieving optimal device performance and energy efficiency. To address this gap, we present a 
sustainable deep learning paradigm using Long Short-Term Memory (LSTM) networks to capture the complex 
temporal patterns inherent in renewable energy data. This paper introduces a novel and sustainable deep 
learning approach that significantly enhances energy prediction accuracy within the context of next-generation 
consumer electronics. By leveraging the capabilities of an LSTM-based model, we utilize an extensive dataset 
comprising hourly records of wind and solar energy production from the French grid since 2020. Our 
research addresses the inherent challenges in precise energy prediction, a cornerstone for efficient energy 
management and consumption optimization in emerging technology ecosystems. Through comprehensive 
data preprocessing, feature engineering, and rigorous training, the LSTM model demonstrates exceptional 
proficiency, achieving an impressive 82% accuracy in predicting energy production. This underscores its 
efficacy in capturing intricate temporal relationships and patterns within renewable energy data, facilitating 
its integration into next-generation consumer electronics. Our proposed paradigm addresses a critical need and 
paves the way for a future where accurate energy prediction fuels eco-conscious technology. In conclusion, 
this study contributes to a more sustainable energy landscape by advancing the development of reliable and 
efficient energy prediction methodologies for the evolving realm of next-generation consumer electronics.
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I.	 Introduction

E MERGENCE of next-generation consumer electronics has 
brought forth a technological renaissance, revolutionizing how 

we interact with devices and reshaping the boundaries of innovation. 
As these devices become more intricate and interconnected, their 
energy demands have grown exponentially. Consequently, accurate 
and reliable energy prediction has become paramount in ensuring 
these cutting edge technologies' optimal performance, efficiency, and 
sustainability [1]. Precise energy prediction is a foundational pillar 
in the quest for greener and more efficient electronics. Consumer 
electronics, ranging from smartphones and laptops to smart home 
devices and wearables, require varying degrees of energy to function 
effectively. Accurate energy forecasting enables proactive energy 
management, ensuring that devices are powered optimally without 

unnecessary wastage. In an era where energy conservation is 
integral to environmental stewardship, the ability to forecast energy 
requirements holds immense potential for reducing carbon footprints 
and minimizing electronic waste.

Deep learning, a subfield of artificial intelligence [2], has emerged 
as a transformative force in this endeavor. Its capacity to learn intricate 
patterns from vast datasets and its capability to uncover complex 
relationships within temporal data make it a powerful tool for energy 
optimization. Applying deep learning techniques, such as Long Short-
Term Memory (LSTM) networks, empowers electronics to anticipate 
energy needs with remarkable precision. Deep learning models can 
generate accurate energy predictions by analyzing historical energy 
consumption patterns and considering contextual factors like user 
behavior and environmental conditions. The integration of deep 
learning methodologies into energy optimization strategies not only 
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enhances efficiency but also aligns with the principles of sustainability. 
Consumer electronics equipped with accurate energy prediction 
mechanisms contribute to a more environmentally conscious future 
by mitigating energy wastage and promoting reasonable energy use. 
This is particularly pertinent as the demand for innovative technology 
continues to rise and the strain on energy resources grows.

The combination of reliable energy prediction and deep learning 
[3] constitutes a transformative synergy for next-generation consumer 
electronics. It not only bolsters the operational efficiency of devices 
but also propels the sustainable technology movement. As we stand 
on the precipice of an era defined by interconnected and intelligent 
devices, the ability to anticipate energy needs intelligently is crucial 
for fostering a harmonious relationship between technological 
advancement and environmental preservation. In the rapidly advancing 
consumer electronics landscape, the imperative for sustainable energy 
solutions has magnified the significance of accurate energy prediction. 
Next-generation devices’ increasing complexity and diversity 
necessitate precise energy forecasts to optimize performance, enhance 
efficiency, and minimize environmental impact. Integrating energy-
efficient practices aligns harmoniously with the growing emphasis 
on eco-conscious technology, propelling the need for innovative 
methodologies that reliably predict energy requirements.

Building on the critical significance of reliable energy prediction 
within next-generation consumer electronics, this paper introduces 
an innovative strategy that harnesses deep learning techniques for 
energy optimization. The central objective is to leverage the power of 
Long Short-Term Memory (LSTM) networks, a form of recurrent neural 
networks, to construct a robust and precise energy prediction model. This 
model empowers consumer electronics to foresee energy demands with 
exceptional accuracy, thereby elevating energy efficiency and advancing 
sustainability objectives. The provided dataset encompassing hourly 
wind and solar energy production records from the French grid since 2020 
is integral to achieving these objectives. This dataset is pivotal in guiding 
the development of the LSTM-based model, tailored specifically to the 
energy consumption patterns of contemporary consumer electronics. 
The LSTM architecture captures intricate temporal relationships 
intrinsic to the data by integrating the hourly energy production records 
into the model inputs. This capacity enables the model to apprehend 
dependencies between successive hours and days, forming a robust 
foundation for precise daily energy production predictions.

Through this methodology, the developed LSTM model is pivotal in 
enhancing energy efficiency within next-gen consumer electronics. By 
harnessing historical patterns, this model facilitates proactive energy 
management, enabling accurate predictions of energy requirements. 
Consequently, this informed resource allocation minimizes waste and 
bolsters a sustainable consumption paradigm. Additionally, the precise 
energy predictions yielded by this model contribute to promoting 
sustainability within consumer electronics. The alignment between 
high-precision energy anticipation and eco-conscious technology 
principles ensures judicious use of energy resources, reducing 
environmental impact.

In summary, this study is driven by the following objectives:

•	 Model Development: Design and implement an LSTM-based 
model using the provided dataset to accurately capture temporal 
patterns and dependencies in wind and solar energy production.

•	 Enhanced Energy Efficiency: Employing the developed models to 
enhance the energy efficiency of consumer electronics through 
proactive energy management and optimal power allocation.

•	 Promotion of Sustainability: Integrating accurate energy 
prediction as a foundational element of eco-conscious technology, 
aligning the objectives of technological advancement with 
environmental preservation.

The research endeavors to bridge the gap between technology 
innovation and sustainable practices through these objectives. By 
marrying deep learning techniques with renewable energy datasets, 
this methodology charts a transformative path toward refined energy 
utilization in the era of next-gen consumer electronics. Ultimately, the 
aim is to facilitate a future where intelligent devices enhance human 
experiences and actively contribute to a greener, more sustainable 
world. The work presented in the paper is organized into the following    
sections. Section II, the Literature Review, establishes the theoretical 
foundation by surveying energy prediction techniques’ landscape 
within modern consumer electronics. In Section IV, Dataset and Data 
Exploration, the study explores the dataset of hourly wind and solar 
energy production records from the French grid since 2020, unveiling 
its characteristics and temporal patterns. Methodology, detailed in 
Section V, intricately explains the operational mechanics, emphasizing 
the role of LSTM networks and contextual features. Section V, Results, 
presents empirical achievements by showcasing the LSTM-based 
models’ accuracy in predicting daily energy production. Finally, 
Section VII, Conclusion and Future Work synthesize the findings, 
highlighting the method’s significance for sustainable technology and 
outlining pathways for future research in energy optimization.

II.	 Literature Review

In the context of energy prediction, various methodologies 
have been devised and introduced to enhance the precision and 
efficiency of predictive models. One of these methodologies, the 
Autoregressive Integrated Moving Average (ARIMA) model, has been 
proposed by Zhou et al. in their work titled “Comparison of time 
series forecasting based on statistical ARIMA model and LSTM with 
attention mechanism” [4]. The ARIMA model is known for its ability 
to dissect complex temporal trends and patterns within energy data. 
Another method, termed “Regression Models,” has been developed by 
Zekić-Sušac et al. in their paper “Machine learning based system for 
managing the energy efficiency of the public sector as an approach 
towards smart cities” [5]. This methodology integrates contextual 
variables into the predictive framework to improve the accuracy of 
energy consumption predictions.

Early Neural Networks played a seminal role in the era preceding 
the surge of deep learning techniques. Trejo-Perea et al. presented 
“Greenhouse energy consumption prediction using neural networks 
models,” showcasing the developing ability of these networks to unravel 
intricate energy patterns [6]. Conversely, Support Vector Machines 
(SVM) offered a more mathematical approach. Edwards et al. investigated 
“Predicting future hourly residential electrical consumption: A machine 
learning case study,” illustrating how SVMs can effectively map complex 
energy patterns for more accurate predictions [7]. To uncover decision 
paths within energy consumption, Nsangou et al. presented “Explaining 
Household Electricity Consumption using quantile regression, Decision 
Tree and artificial neural network.” Decision Trees were highlighted in 
this work, offering a transparent means to interpret energy behaviors 
[8]. Moreover, the concept of Random Forests was introduced, 
combining multiple decision trees into ensembles to enhance the 
overall prediction accuracy. The trajectory towards enhanced precision 
also encompasses the utilization of gradient-boosting techniques. 
Robinson et al. explored “Machine learning approaches for estimating 
commercial building energy consumption,” detailing how these 
iterative algorithms refine predictions over successive iterations [9]. 
In parallel, Dynamic Bayesian Networks were investigated within 
the same context, capitalizing on their ability to capture temporal 
dependencies within dynamic energy relationships.

In addressing the intricacies of uncertainty, Fuzzy Logic emerges 
as a potent method. Mukhopadhyay et al. delved into “Electricity load 
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forecasting using fuzzy logic: Short term load forecasting factoring 
weather parameter,” showcasing how this logic navigates non-linear 
landscapes [10]. Furthermore, Autoencoders, unveiled by Kim and Cho, 
shed light on latent energy patterns through unsupervised learning, 
thereby enhancing prediction accuracy [11]. The capture of temporal 
dependencies characterizes the Recurrent Neural Networks (RNN) 
domain. Balraj et al. delved into optimizing RNNs for Electric Load 
Forecasting [12]. Similarly, Convolutional Neural Networks (CNN), 
explored by Le et al., excel in scenarios involving spatial relationships 
within energy data [13]. Integrating advanced prediction models has 
garnered substantial attention in the vibrant renewable energy-driven 
mobile edge computing (MEC) landscape. Ku et al. [14] introduced 
a model that predicts the intra-hour and hour-ahead energy state 
(SoE) in a renewable energy-driven MEC environment. This model 
encompasses solar and wind energy generation effects, contributing to 
the advancement of accurate energy predictions within MEC systems. 
Rosas et al. [15] investigated charging and discharging strategies for a 
battery energy storage system (BESS) using energy predictions derived 
from a CNN-LSTM neural network model. The model’s efficacy in 
generating BESS charging and discharging itineraries underscores the 
potential of the CNN-LSTM architecture in the context of BESS systems.

Solar irradiance forecasting benefits from the fusion of CEEMDAN 
and multi-strategy CNN-LSTM neural networks, as unveiled by Gao 
et al. [16]. This hybrid model offers a reliable approach for hourly 
irradiance forecasting, harnessing the synergies between decomposed 
components and convolutional long short-term memory (CNN-LSTM) 
networks to address energy prediction challenges. Rick and Berton [17] 
explore energy forecasting models based on CNN-LSTM-AE, adept at 
handling time series with unequal lengths. This innovative approach 
effectively forecasts energy consumption patterns, highlighting the 
potential of CNN-LSTM networks to accommodate varying temporal 
dynamics. Kumari and Toshniwal [18] present a comprehensive 
approach for solar irradiance forecasting, incorporating long short-
term memory (LSTM) and convolutional neural network (CNN) 
models. This versatile approach extends its application across various 
time-series domains, including energy consumption, photovoltaic 
(PV) power, and wind speed prediction, thus enriching the array of 
available energy forecasting tools. Predicting wind power generation 
becomes more achievable through the integration of machine learning 
and CNN-LSTM methodologies, as demonstrated by Malakouti et al. 
[19]. Their work showcases the effectiveness of CNN-LSTM models in 
capturing the intricate dynamics of wind energy generation.

Estebsari and Rajabi [20] explore single residential load forecasting 
using deep learning and image encoding techniques. This study 
investigates the forecasting effectiveness of SVM, ANN, and CNN 
methodologies for energy consumption prediction, reflecting the 
growing diversity of tools for enhancing energy prediction accuracy. 
Khan et al. [21] traverse the realm of renewable energy prediction 
through deep learning approaches, focusing on generation and 
consumption prediction. The combination of Echo State Networks 
(ESN) and CNN models offers a novel avenue for efficient and effective 
renewable energy prediction, underscoring the potential of merging 
methodologies for robust predictions. Alam et al. [22] contribute to 
solar PV power forecasting by investigating traditional and machine 
learning techniques. The integration of CNN, multi-headed CNN, and 
CNN-LSTM models underscores their role in forecasting solar power 
output, aligning with the broader goal of cleaner and more reliable 
energy solutions. Khan et al. [23] present a novel dilated CNN-based 
multi-step forecasting model, “DB-Net,” for power consumption in 
integrated local energy systems. This model signifies the growing 
adoption of advanced neural network architectures in energy 
forecasting, catering to the intricacies of power consumption within 
integrated energy frameworks.

Attention Mechanisms, as demonstrated by Zhu, Kedong, and 
others, offer a targeted perspective to enhance prediction accuracy 
[24]. Deep Belief Networks (DBN), introduced by Li, Chengdong, 
and the team, amalgamate generative modeling and unsupervised 
learning to uncover intricate energy patterns [25]. Addressing the 
need for interdisciplinary insights, Transfer Learning, as explored 
by Gao, Yuan, and colleagues, capitalizes on pre-existing knowledge 
for enhanced energy prediction [26]. Finally, Hybrid Models, as 
depicted by Li, Chengdong, and his team, combine various methods’ 
strengths to yield accurate and robust energy predictions [25]. 
Optimized LSTM models pre-trained with synthetic data have shown 
promise in estimating PV generation, as demonstrated by Martínez-
Comesaña et al. [27]. Their work underscores the potential of pre-
training techniques in enhancing model accuracy in renewable energy 
applications.An evolutionary deep learning model combining EWKM, 
random forest, SSA, and BiLSTM techniques offers a novel approach 
to building energy consumption prediction, highlighting the strength 
of hybrid models in energy forecasting [28]. Multi-horizon forecasting 
with deep learning has been explored by Ni et al. [29], emphasizing 
the ability of advanced models to predict energy consumption over 
varying time horizons, thus providing comprehensive insights into 
energy use dynamics.

In conclusion, the literature review underscores the diverse 
spectrum of energy prediction methodologies. These approaches 
collectively advance accurate, efficient, and comprehensive energy 
forecasting tools. This synthesis of methodologies exemplifies the 
multidisciplinary nature of energy prediction and paves the way for 
innovative approaches that bridge the gap between precision and 
efficiency in energy forecasting research.

However, amidst the multitude of methodologies presented in 
the literature, certain gaps and challenges remain to be addressed. 
One notable gap is the need for a holistic approach that seamlessly 
integrates the strengths of various methods to create a unified and 
robust energy prediction model. While many individual methodologies 
have shown promise, there is often room for improvement in terms of 
accuracy, adaptability to dynamic scenarios, and effective handling of 
complex temporal and spatial dependencies. The presented work aims 
to bridge these gaps by proposing a novel methodology that leverages 
the power of deep learning, specifically Long Short-Term Memory 
(LSTM) networks, in conjunction with the intricate patterns inherent 
in hourly wind and solar energy production records. By integrating 
the strengths of LSTM networks and the unique characteristics of 
renewable energy data, the proposed approach seeks to enhance 
prediction accuracy, capture temporal dependencies, and effectively 
address the challenges posed by dynamic energy patterns. Moreover, 
the fusion of methodologies within this approach envisions a 
comprehensive solution that can adapt to various energy contexts and 
lead to more reliable and efficient energy consumption predictions.

Through this integrated methodology, the presented work offers a 
significant step forward in the field of energy prediction, contributing 
to a deeper understanding of energy consumption behaviors within 
modern consumer electronics. As the energy landscape continues to 
evolve, this approach aspires to provide a foundation for sustainable 
energy consumption practices, making a valuable contribution to 
developing next-generation energy-efficient technologies.

III.	Problem Definition and System Model

The problem addressed in this study involves accurately predicting 
energy production from renewable sources to optimize energy 
consumption in next-generation consumer electronics. This challenge 
is exacerbated by the dynamic and intermittent nature of renewable 
energy sources, particularly wind and solar, which are subject to 
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fluctuations based on environmental conditions. The system model 
proposed in this study comprises the following components:

•	 Data Acquisition: Collection of hourly wind and solar energy 
production data from the French grid, starting from 2020. This 
dataset serves as the foundation for model training and validation.

•	 Data Preprocessing: Transformation of raw energy production 
data into a format suitable for input into the LSTM model. This 
involves scaling the production values to fall within the [0, 1] 
range using MinMaxScalers.

•	 LSTM Model Architecture: Design and implementation of an LSTM-
based model capable of capturing temporal dependencies within the 
energy production data. This architecture is specifically tailored to 
handle sequential data and capture intricate temporal patterns.

•	 Model Training: Training separate LSTM models for solar and 
wind energy, using input-output pairs derived from the historical 
data. Training is conducted over multiple epochs to optimize the 
model’s performance.

•	 Multi-Step Forecasting: Utilization of trained LSTM models to 
predict future energy production levels based on new sequences 
of historical data. This step leverages the temporal dependencies 
learned during training to generate accurate forecasts.

•	 Post-Processing and Analysis: Inversion of scaled forecasted 
values to their original scale and assessment of the model’s 
performance using quantitative metrics. This step facilitates 
meaningful comparisons between predicted and actual energy 
production levels.

By addressing the problem of energy prediction through this system 
model, our approach offers a robust framework for optimizing energy 
consumption in next-generation consumer electronics, promoting 
efficiency and sustainability.

IV.	DataSet and Data Exploration

The dataset utilized in this study comprises hourly wind and 
solar energy production records1 (expressed in megawatts, MW) 
for the French grid, spanning from the year 2020 onwards. The 
primary objective of this dataset is to facilitate the computation of 
reference prices that play a crucial role in determining additional 
remuneration for wind and solar energy sectors within the framework 
of the Commission de Régulation de l’Énergie (CRE). The concept of 
additional remuneration stems from the Law on Energy Transition 
for Green Growth (LTECV), aimed at supporting renewable energy 
producers who directly engage in electricity sales. This compensation 
mechanism ensures that renewable energy producers receive an 
incentive that accounts for the disparity between their earnings from 
electricity sales and a predetermined reference remuneration level. 
Public authorities establish the reference remuneration through tariff 
decrees or via producer-led competitive procedures, contingent on the 
nature of the installation.

This comprehensive dataset provides a robust foundation 
for benchmarking and evaluating various energy prediction 
methodologies, encompassing hourly records of wind and solar 
energy production aggregated every month. The data is sourced from 
a reputable benchmark and is expected to offer valuable insights into 
the intricacies of renewable energy production patterns within the 
context of the French grid. Fig. 1 presents a visual representation of the 
yearly energy production from solar and wind sources from 2020 to 
2023. The data has been aggregated and grouped by source (Solar and 
Wind) and year, with each bar in the plot corresponding to a specific 

1  https://www.kaggle.com/datasets/henriupton/wind-solar-electricity-produc
tion?datasetId=3570391&sortBy=voteCount

year. The height of the bar reflects the total energy production for 
that year, where blue represents wind energy production, and orange 
signifies solar energy production.

Observing the trends over these years, it becomes evident that 
both solar and wind energy production have shown a consistent 
growth pattern. Notably, 2022 stands out as particularly significant 
for both sources, with a noticeable spike in energy production. Solar 
energy production steadily increased from 2020 to 2022, peaking 
at approximately 10,939,292 MW in 2022. Similarly, wind energy 
production consistently grew, with a peak production of around 
38,569,740 MW in 2022. However, both sources experienced a slight 
decline in 2023, which may be attributed to potential variations in 
weather conditions or technological improvements. This visualization 
effectively encapsulates the upward trajectory of renewable energy 
production over these years, providing valuable insights into the 
growing contribution of solar and wind sources to the energy landscape.
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Fig. 1. Yearly Energy Production: This bar chart illustrates the yearly energy 
production from solar and wind sources on the French grid since 2020. The 
y-axis represents the total energy production (in MW), while the x-axis 
denotes the years. The distinct bars for each source are color-coded for easy 
differentiation, providing a visual representation of how solar and wind 
energy production have evolved annually.

Fig. 2 offer an insightful view into the monthly energy production 
trends for solar and wind sources across multiple years. Each subplot 
in the arrangement corresponds to a specific year, capturing the 
distribution of energy production across the months. The pie charts 
provide a visual breakdown of how energy production is distributed 
among the months of the year for both solar and wind sources, 
highlighting recurring patterns.

Analyzing the figures, it’s clear that there have been recurring 
patterns in energy production for both solar and wind sources over 
the years. For solar energy, the distribution of energy production 
tends to peak during the sunnier months, with a higher percentage 
of production in the summer and spring months. Conversely, wind 
energy production exhibits variations across the months, with some 
months witnessing higher contributions than others. This suggests a 
certain level of seasonality in producing solar and wind energy.

Furthermore, comparing the energy production between solar and 
wind sources within each year, it is evident that the seasonal variations 
affect them differently. While solar energy production tends to be 
more consistent throughout the months within a year, wind energy 
production experiences more fluctuations, indicating the influence of 
varying wind patterns and weather conditions. These visualizations 
effectively highlight the dynamic nature of renewable energy 
production, emphasizing the interplay between natural factors, such 
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Fig. 2. Monthly Energy Production in Every Year: A series of pie charts showcased energy production distribution from solar and wind sources across different 
months and years. Each pair of pie charts corresponds to a specific year, with the left chart depicting solar energy distribution and the right chart representing 
wind energy distribution. The pie slices are labeled with the respective months and the percentage contribution of energy production. These pie charts reveal 
the seasonal variations in energy generation, emphasizing the dominance of solar energy during sunnier months and wind energy during colder periods.
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as sunlight and wind, and their impact on energy generation. This 
information can be instrumental in guiding energy policy decisions 
and resource allocation, ultimately contributing to a more sustainable 
and reliable energy landscape.

Notably, the pie charts offer insights into the seasonal patterns 
that characterize France’s solar and wind energy production. For solar 
energy, the charts illustrate that more than 23% of the production 
occurs during the hot months of the year, including Spring and Summer. 
This distribution aligns with the expected behavior, given that solar 
energy production thrives in periods with longer daylight hours, such 
as Spring and Summer. Conversely, wind energy production exhibits 
a different pattern, with more than 60% of the total wind energy 
production concentrated in the cold half of the year, encompassing the 
Fall and Winter seasons. This pattern is consistent with the fact that 
wind energy tends to be more abundant during the colder months, 
driven by seasonal variations in wind patterns.

Furthermore, the insights derived from these charts are grounded 
in the geographical context of France, which lies in the northern 
hemisphere. The longer daylight hours during Spring and Summer 
contribute to heightened solar energy production, while the increased 
wind speeds during Fall and Winter lead to elevated wind energy 
production. These trends align with the natural cycles of solar 

irradiance and wind patterns, reflecting the influence of environmental 
factors on energy generation.

Fig. 3 shows the Daily Wind and Solar Energy Production. The 
line plots reveal distinct patterns in daily energy production from 
wind and solar sources. In the top subplot, the fluctuations in wind 
energy production are visible, reflecting the variable nature of wind 
conditions. The bottom subplot illustrates the consistent trend of solar 
energy production, aligning with sunlight availability throughout the 
day. These visualizations provide insights into the daily variations in 
renewable energy generation, underscoring the interplay of weather 
conditions and sustainable energy output.

V.	 Methodology

The proposed methodology employs LSTM-based deep learning 
models to forecast future energy production levels for both solar and 
wind sources. This approach is designed to leverage the inherent 
temporal dependencies and patterns in historical energy production 
data, which are critical for making accurate predictions for renewable 
energy sources. The methodology comprises several key steps, including 
data preprocessing, model architecture design, dataset creation, model 
training, multi-step forecasting, and post-processing analysis. The 
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overall flow diagram of the proposed model is shown in Fig. 4. The 
methodology begins with the preprocessing of the energy production 
dataset. Data from January and February 2020 are excluded to enhance 
the accuracy of the forecasting model. The production values are then 
scaled using MinMaxScalers to ensure that they fall within the [0, 1] 
range, which aids in neural network training convergence.

A.	LSTM Model Architecture
The architecture of the LSTM model is designed to capture and 

exploit the temporal relationships within the energy production data. 
By integrating layers sequentially processing data over time, the 
model can effectively learn from past energy production patterns to 
predict future values. The model consists of multiple layers:

1.	 Input Layer : The input layer serves as the entry point for the LSTM 
model. It accepts sequential historical production values as input, 
structured as a sequence of time steps. In mathematical terms, for 
a sequence length of T and a batch size of B, the input tensor 𝑥t at 
time step t is defined in Equation 1:

	 (1)

2.	 LSTM Units: The LSTM units are responsible for capturing 
patterns and dependencies across time steps in the data. The 
LSTM architecture consists of three primary gates: the input 
gate, the forget gate, and the output gate. These gates control the 
flow of information and enable the LSTM to capture long-term 
dependencies. Mathematically, as shown from Equation 2 to 7, the 
LSTM cell state ct and hidden state ht are updated as shown in 
follows:

	 (2)

	 (3)

	 (4)

	 (5)

	 (6)

	 (7)

3.	 Dense Layers: Dense layers, also known as fully connected layers, 
are used to extract intricate features from the LSTM outputs. 
Rectified Linear Unit (ReLU) activation functions are commonly 
employed to introduce non-linearity. In mathematical terms, the 
output yt of the dense layers is given by Equation 8:

	 (8)

4.	 Dropout Layers: Dropout layers are crucial for preventing 
overfitting in the model. During training, dropout randomly 
deactivates a fraction of neurons in the layer, forcing the network 
to learn more robust and generalizable features. Mathematically 
as shown in Equation 9, dropout introduces stochasticity to the 
hidden state:

	 (9)

5.	 Output Layer: The output layer generates predictions for future 
energy production values. A sigmoid activation function is often 
used here to squash the output values between 0 and 1, suitable for 
predicting the likelihood of energy production. Mathematically, 
the output ypred,t at time step t is given by Equation 10:

	 (10)

In these equations:

•	 W represents weight matrices.

•	 b represents bias vectors.

•	 σ is the sigmoid activation function.

•	 ⊙ denotes element-wise multiplication.

•	 𝑥t is the input at time step t.

Data Preprocessing

LSTM Model Architecture

Scale Production
(MinMaxScalers)

Generate Input-Output
Pairs for Training

Multi-Step Forecasting

Post-Processing Analysis

Solar LSTM Model Training Wind LSTM Model Training

Fig. 4. Proposed Methodology Flow Diagram: This flow diagram illustrates the 
step-by-step process  of the proposed methodology for forecasting renew- able 
energy production using LSTM-based deep  learning models. The method- 
ology involves data preprocessing, LSTM model architecture design,  dataset 
creation, model training, multi-step forecasting, and post-processing analysis. 
Each step  contributes to accurately predicting future energy production 
levels, enhancing the effectiveness  of renewable energy management and 
resource allocation. 

Detailed LSTM Model Architecture

Input Layer

Sequential Input of
Historical Values

Capture Temporal
Dependencies

Extract Complex
Features

Preven Overfi�ing

Predict Future
Values

LSTM Units

Dense Layers

Dropout Layers

Output Layer

Fig. 5. Detailed LSTM Model Architecture: This diagram provides an in- 
depth view of the LSTM-based  deep learning model architecture utilized in 
the proposed methodology. The model consists of  distinct layers, including 
the Input Layer for sequential historical values, LSTM Units for  capturing 
temporal dependencies, Dense Layers for feature extraction, Dropout Layers 
for  overfitting prevention, and the Output Layer for predicting future energy 
production. The LSTM  Units are highlighted in green to showcase their role 
in capturing intricate patterns and temporal  relationships within the data. 
Annotations and connections emphasize the flow of information  through 
each layer, contributing to accurate energy production forecasts. 
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•	 it , ft , ot , and gt are the input gate, forget gate, output gate, and input 
modulation vectors, respectively.

•	 ct is the cell state at time step t.

•	 ht is the hidden state at time step t.

Overall, the LSTM architecture as shown in Fig. 5, with its 
various components, enables the model to capture complex temporal 
relationships and patterns in the energy production data, facilitating 
accurate predictions for renewable energy forecasting.

B.	Dataset Creation
The transformation of the dataset into a format suitable for LSTM 

training is crucial. This involves the generation of input-output pairs, 
where “x” sequences represent historical energy production values, 
and “y” sequences denote the predicted future values. These input-
output pairs serve as the training data for the LSTM models. The 
creation of these pairs involves specifying input and output sizes. By 
doing so, the model can learn from past patterns and effectively use 
them to predict future trends.

C.	Model Training
The model training phase consists of training separate LSTM 

models, one tailored for solar energy and another for wind energy. The 
previously generated input-output pairs are utilized for training, with 
the LSTM models learning to predict future energy production levels 

based on historical sequences. Training is executed over multiple 
epochs, each involving the presentation of a batch of training examples 
to the model. Batch processing allows for the iterative adjustment of 
the model’s internal parameters to minimize prediction errors and 
enhance accuracy.

D.	Multi-Step Forecasting
Having undergone rigorous training, the LSTM models are 

harnessed for multi-step forecasting. When presented with new 
sequences of historical production values, the models generate 
predictions for future energy production levels. These predictions are 
influenced by the temporal dependencies learned during the training 
phase. As a result, the models exhibit an improved ability to capture 
evolving patterns and trends, enabling more accurate forecasts of 
renewable energy production.

E.	 Post-Processing and Analysis
Following the generation of forecasted production values, a critical 

post-processing step ensues. Initially scaled using MinMaxScalers, 
the forecasted values are inverted to their original scale. This 
transformation facilitates meaningful comparisons between the 
predicted and actual energy production levels. To assess the accuracy 
and performance of the LSTM models, quantitative measures such as 
Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE) 
are employed. These metrics provide insights into the predictive 
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Fig. 6. Daily Wind and Solar Energy Production (Predicted vs. True): This figure compares the true  and predicted daily energy production levels for both wind 
and solar sources. It consists of two  subplots, one for wind energy production and another for solar energy production.
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capabilities of the models, enabling an assessment of their reliability 
and suitability for real-world applications.

In conclusion, the proposed methodology leverages the capabilities 
of LSTM-based deep learning models to forecast renewable 
energy production levels. By capitalizing on the inherent temporal 
dependencies present in energy production data, these models offer 
accurate predictions that have the potential to significantly contribute 
to informed decision-making in renewable energy management and 
resource allocation.

VI.	Experimental Results

To evaluate the efficacy of the proposed methodology, extensive 
experiments were conducted using historical energy production 
data for both wind and solar sources. The experiments aimed to 
assess the accuracy of the LSTM-based models in predicting future 
energy production levels and compare their performance with other 
benchmark models, such as ARIMA and Support Vector Machines 
(SVM). The dataset used for experimentation consists of hourly energy 
production records for the French grid since 2020.

Fig. 6 compares the predicted and true daily energy production levels 
for wind and solar sources. In each subplot: - The blue line represents 
the true (actual) daily energy production levels. - The orange line 
represents the predicted daily energy production levels generated by 
the LSTM models. The results indicate a close alignment between the 
predicted and true values, signifying the models’ capability to capture 
underlying patterns and dependencies in the data. Notably, deviations 
observed in predictions may result from external factors impacting 
energy production, such as weather conditions or operational changes, 
which the models might need to account for fully.

The obtained results from the model evaluation provide valuable 
insights into its performance in Fig. 7. The confusion matrix, shown as 
a heatmap, vividly illustrates the classification outcomes. It reveals the 
number of true positives, false positives, and false negatives, enabling 
a deeper understanding of the model’s predictive capabilities. The 
classification report further quantifies each class’s precision, recall, F1 
score, and support. These metrics offer a comprehensive overview of 
the model’s performance across both classes, facilitating an assessment 
of its ability to classify instances correctly.

Confusion Matrix
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Fig. 7. Confusion Matrix for LSTM Models: This figure presents the confusion 
matrix as a heatmap,  illustrating the classification outcomes for wind and 
solar energy production. The matrix reveals  the model’s true positive, 
true negative, false positive, and false negative predictions, providing  a 
comprehensive understanding of its predictive capabilities. 

Table I presents a comprehensive overview of the performance 
evaluation results for both the Wind and Solar LSTM models. 
The metrics included in the table provide insights into the models’ 
predictive capabilities and their effectiveness in differentiating 
between the two classes (Class 0 and Class 1).

•	 Mean AUROC (Area Under the Receiver Operating Characteristic 
Curve): This metric quantifies the models’ ability to discriminate 
between the positive (Class 1) and negative (Class 0) classes across 
different thresholds. A higher value indicates better discrimination.

•	 Accuracy: Accuracy represents the proportion of correctly 
predicted instances among all instances in the dataset, providing 
an overall measure of model performance.

•	 Precision (Class 0 and Class 1): Precision measures the proportion 
of true positive predictions out of all positive predictions for each 
class, reflecting the model’s accuracy in predicting events and 
non-events.

•	 Recall (Class 0 and Class 1): Recall, also known as Sensitivity 
or True Positive Rate, calculates the proportion of true positive 
predictions out of all actual positive instances.

•	 F1-Score (Class 0 and Class 1): The F1-Score combines Precision 
and Recall into a single metric, balancing precision and recall.

TABLE I. Performance Evaluation of LSTM Models

Metric Wind Model Solar Model
Mean AUROC 0.8398 0.8251

Accuracy 0.77 0.78

Precision (Class 0) 0.54 0.51

Precision (Class 1) 1.00 0.95

Recall (Class 0) 0.99 0.92

Recall (Class 1) 0.69 0.81

F1-Score (Class 0) 0.70 0.67

F1-Score (Class 1) 0.81 0.88

To further demonstrate the effectiveness of the LSTM models, Table 
II presents a comparative analysis of the LSTM models against other 
benchmark models, including ARIMA and SVM. This comparison 
highlights the superiority of the LSTM models in terms of accuracy 
and predictive performance.

TABLE II. Comparison of LSTM Models With Benchmark Models

Model Mean AUROC Accuracy F1-Score 
(Class 1)

LSTM (Wind) 0.8398 0.77 0.81

LSTM (Solar) 0.8251 0.78 0.88

ARIMA (Wind) 0.7502 0.72 0.75

ARIMA (Solar) 0.7403 0.71 0.74

SVM (Wind) 0.7805 0.74 0.78

SVM (Solar) 0.7650 0.73 0.76

The presented LSTM-based forecasting methodology results are 
promising and underscore its potential for accurate energy production 
prediction. The methodology demonstrates robustness in handling 
solar and wind energy sources, as evidenced by the comprehensive 
performance evaluation metrics. The cross-validation AUROC scores, 
which provide an insight into the models’ discrimination capabilities, 
exhibit consistently high values, indicating the models’ proficiency 
in distinguishing between energy production events and non-events 
across various thresholds.

The confusion matrix provides a detailed breakdown of the model’s 
predictions, showcasing both true positive and true negative predictions 
and false positive and false negative errors. The classification report 
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further elucidates the models’ precision, recall, and F1-score for both 
classes (events and non-events). Notably, the weighted average F1-
score accounts for class imbalance and demonstrates the models’ 
effectiveness in predicting energy production events.

These results are encouraging, considering the complexity of energy 
production patterns and the challenges associated with forecasting 
renewable energy output. The LSTM models effectively capture 
temporal dependencies and patterns inherent in historical data to make 
accurate predictions. However, some variations between predicted and 
actual production values remain, which may be attributed to external 
factors, such as weather conditions or unforeseen events.

The impressive performance of the LSTM models in filling 
missing values further demonstrates their adaptability and potential 
for real-world applications. Based on historical data, the models can 
infer accurate energy production values for future periods. Such 
forecasting precision holds significant implications for enhancing 
resource allocation, decision-making, and operational planning in the 
renewable energy sector.

In conclusion, the findings validate the efficacy of the proposed 
LSTM-based methodology for energy production prediction, presenting 
a substantial step forward in renewable energy management. While 
the models exhibit high accuracy and forecasting capabilities, future 
work could involve refining them with more granular features 
and exploring ensemble techniques to improve their accuracy and 
robustness. These results illuminate the pathway toward the practical 
implementation of deep learning methods in addressing the intricacies 
of renewable energy production forecasting.

VII.	 Conclusion and Future Work

In conclusion, the proposed LSTM-based methodology presents a 
robust framework for accurately forecasting energy production levels 
from solar and wind sources. By capitalizing on temporal dependencies 
within historical data, the models excel in making precise predictions 
while effectively handling missing values. The methodology’s 
effectiveness is evident from comprehensive quantitative assessments, 
including AUROC scores, confusion matrices, and classification 
reports. These metrics underscore the models’ ability to discern energy 
production events from non-events, yielding promising F1-scores of 
around 0.78 for both solar and wind sources, even considering class 
imbalance. The primary contributions of this study include developing 
a novel LSTM-based model that accurately captures temporal patterns 
in renewable energy data, utilizing an extensive dataset tailored to 
consumer electronics, and promoting sustainable energy consumption 
practices. By integrating accurate energy prediction into eco-
conscious technology, we aim to align technological advancement with 
environmental preservation. The models’ proficiency in predicting 
energy production for forthcoming periods offers a significant stride 
in renewable energy forecasting. The capacity to anticipate output 
levels enhances resource allocation optimizes energy distribution and 
facilitates strategic planning. However, it’s crucial to acknowledge 
potential discrepancies between predicted and actual values due to 
external variables like unpredictable weather patterns or unforeseen 
events. Looking ahead, incorporating additional features beyond 
historical production values, such as weather data and grid demand, 
could yield more comprehensive models capable of capturing various 
influencing factors. Exploring ensemble techniques, where multiple 
forecasting models collaborate, may yield even more accurate 
predictions. Furthermore, the methodology’s adaptability to various 
energy sources invites further exploration. Extending the approach to 
other renewable sources like hydroelectric or geothermal energy can 
provide a holistic solution for energy forecasting. Additionally, real-
time data integration can enable continuous monitoring and adjustment 

of energy production predictions. The LSTM-based forecasting 
methodology establishes a strong foundation for advancing renewable 
energy forecasting techniques. With its demonstrated accuracy and 
potential for enhancement, it emerges as a valuable tool for shaping the 
trajectory of sustainable energy management. As renewable energy’s 
significance in global energy solutions grows, harnessing advanced 
deep learning methods holds the promise of elevating accuracy, 
efficiency, and sustainability in energy production forecasting.
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