Drug Target Interaction Prediction Using Machine Learning Techniques – A Review.
DOI:
https://doi.org/10.9781/ijimai.2022.11.002Keywords:
Chemogenomics, Drugs, Machine Learning, Target FindingAbstract
Drug discovery is a key process, given the rising and ubiquitous demand for medication to stay in good shape right through the course of one’s life. Drugs are small molecules that inhibit or activate the function of a protein, offering patients a host of therapeutic benefits. Drug design is the inventive process of finding new medication, based on targets or proteins. Identifying new drugs is a process that involves time and money. This is where computer-aided drug design helps cut time and costs. Drug design needs drug targets that are a protein and a drug compound, with which the interaction between a drug and a target is established. Interaction, in this context, refers to the process of discovering protein binding sites, which are protein pockets that bind with drugs. Pockets are regions on a protein macromolecule that bind to drug molecules. Researchers have been at work trying to determine new Drug Target Interactions (DTI) that predict whether or not a given drug molecule will bind to a target. Machine learning (ML) techniques help establish the interaction between drugs and their targets, using computer-aided drug design. This paper aims to explore ML techniques better for DTI prediction and boost future research. Qualitative and quantitative analyses of ML techniques show that several have been applied to predict DTIs, employing a range of classifiers. Though DTI prediction improves with negative drug target pairs (DTP), the lack of true negative DTPs has led to the use a particular dataset of drugs and targets. Using dynamic DTPs improves DTI prediction. Little attention has so far been paid to developing a new classifier for DTI classification, and there is, unquestionably, a need for better ones.
Downloads
References
L. Martin, M. Hutchens, C. Hawkins, A. Radnov, “How much do clinical trials cost?”, Nature Reviews-Drug Discovery, vol. 16, no. 6, pp. 381-382, June 2017, DOI: 10.1038/nrd.2017.70.
S.J. Swamidass, “Mining small-molecule screens to repurpose drugs,” Briefing in Bioinformatics, vol. 12, no. 4, pp. 327–335, 2011, DOI: 10.1093/bib/bbr028.
F. Moriaud, S.B. Richard, S.A. Adcock, L. Chanas-Martin, J.S. Surgand, M. Ben Jelloul, F. Delfaud, “Identify drug repurposing candidates by mining the protein data bank,” Briefings in Bioinformatics, vol. 12, no. 4, pp. 336- 340, Jul 2011, DOI: 10.1093/bib/bbr017.
R. Chen, X. Liu, S. Jin, J. Lin and J. Liu, “Machine learning for drug-target interaction prediction,” Molecules, vol. 23, no. 9, pp. 2208, 2018, DOI: 10.3390/molecules23092208.
T.T. Talele, S.A. Khedkar and A.C. Rigby, “Successful Applications of Computer Aided Drug Discovery: Moving Drugs from Concept to the Clinic,” Current Topics in Medicinal Chemistry, vol. 10, no. 10, pp. 127, 2010, DOI: 10.2174/156802610790232251.
T. Usha, D. Shanmugarajan, A.K. Goyal, C.S. Kumar and S.K. Middha, “Recent updates on computer-aided drug discovery: time for a paradigm shift,” Current topics in medicinal chemistry, vol. 17, no. 30, pp. 3296- 3307, 2017, DOI: 10.2174/1568026618666180101163651.
L. Jacob, J-P. Vert, “Protein-ligand interaction prediction: an improved chemogenomics approach,” Bioinformatics, vol. 24, no. 19, pp. 2149–2156, 2008, DOI: 10.1093/bioinformatics/btn409.
D. Rognan, “Chemogenomic approaches to rational drug design”, British Journal of Pharmacology, vol. 152, no. 1, pp. 38–52, 2007, DOI: 10.1038/sj.bjp.0707307.
A. Nath, P. Kumari, R. Chaube, “Prediction of human drug targets and their interactions using machine learning methods: current and future perspectives,” Methods in molecular biology, Springer, NY, USA, vol. 1762, pp. 21–30, 2018, DOI: 10.1007/9781493977567_2.
L. Lü, T. Zhou, “Link prediction in complex networks: a survey”, Physica A, vol. 390, pp. 1150–1170, 2011, DOI: 10.1016/j.physa.2010.11.027.
L. Perlman, A. Gottlieb, N. Atias, E. Ruppin, R. Sharan, “Combining drug and gene similarity measures for drug-target elucidation,” Journal of computational biology: a journal of computational molecular cell biology, vol. 18, no. 2, pp. 133–145, 2011, DOI: 10.1089/cmb.2010.0213.
J.-P. Mei, C.-K. Kwoh, P. Yang, X.L. Li, J. Zheng, “Drug–target interaction prediction by learning from local information and neighbours”, Bioinformatics, vol. 29, no. 2, pp. 238–245, 2012, DOI: 10.1093/bioinformatics/bts670.
T. Van Laarhoven, E. Marchiori, “Predicting drug–target interactions for new drug compounds using a weighted nearest neighbor profile”, PloS One, vol. 8, no. 6, pp. e66952, 2013, DOI: 10.1371/journal.pone.0066952.
J.-Y. Shi, S.-M. Yiu, Y. Li, H.C. Leung, F.Y. Chin, “Predicting drug–target interaction for new drugs using enhanced similarity measures and supertarget clustering,” Methods, vol. 83, pp. 98–104, 2015, DOI: 10.1016/j. ymeth.2015.04.036.
K. Buza, “Drug–target interaction prediction with hubness aware machine learning,” In: 2016 IEEE 11th International Symposium on Applied Computational Intelligence and Informatics (SACI), IEEE, New York, USA, 2016, pp. 37–40, DOI: 10.1109/SACI.2016.7507416.
W. Zhang, Y. Chen, D. Li, “Drug–target interaction prediction through label propagation with linear neighborhood information,” Molecules, vol. 22, no. 12, pp. 2056, 2017, DOI: 10.3390/molecules22122056.
X. Zhang, L. Li, M.K. Ng, S. Zhang, “Drug–target interaction prediction by integrating multiview network data”, Computational Biology and Chemistry, vol. 69, pp. 185–193, 2017, DOI: 10.1016/j.compbiolchem.2017.03.011.
Z. Shi, J. Li, “Drug–target interaction prediction with weighted Bayesian ranking,” In: Proceedings of the 2nd International Conference on Biomedical Engineering and Bioinformatics, ACM, London, United Kingdom, 2018, pp. 19–24.
S. Rendle, C. Freudenthaler, Z. Gantner, Z. Gartner, L. Schmidt-Thieme, “BPR: Bayesian Personalized Ranking from implicit feedback,” In: Proceedings of the Twenty-Fifth Conference on Uncertainty in Artificial Intelligence, AUAI Press, McGill, Canada, 2009, pp. 452–461, DOI: 10.1145/3278198.3278210.
M. Gönen, “Predicting drug–target interactions from chemical and genomic kernels using Bayesian matrix factorization,” Bioinformatics, vol. 28, no. 18, pp. 2304–2310, 2012, DOI:10.1093/bioinformatics/bts360.
L. Li, M. Cai, “Drug target prediction by multi-view low rank embedding”, IEEE/ACM Transactions on Computational Biology and Bioinformatics vol. 16, no.5, pp.1712-1721, 1 Sep-Oct 2019, DOI: 10.1109/TCBB.2017.2706267.
B. Bolgár, P. Antal, “VB-MK-LMF: fusion of drugs, targets and interactions using variational Bayesian multiple kernel logistic matrix factorization”, BMC Bioinformatics, vol. 18, no. 1, pp. 440, 2017, DOI: 10.1186/s12859- 017-1845-z.
Y.A. Huang, Z.H. You, X. Chen, “A Systematic Prediction of Drug-Target Interactions Using Molecular Fingerprints and Protein Sequences”, Current protein & peptide science, vol. 19, no. 5, pp. 468-478, 2018, DOI: 10.2174/1389203718666161122103057.
M. Caro-Martínez, G. Jiménez-Díaz, J. A. Recio-García. “Local ModelAgnostic Explanations for Black-box Recommender Systems Using Interaction Graphs and Link Prediction Technique”, International Journal of Interactive Multimedia and Artificial Intelligence, 2021, DOI: 10.9781/ijimai.2021.12.001.
T. Van Laarhoven, S.B. Nabuurs, E. Marchiori, “Gaussian interaction profile kernels for predicting drug–target interaction”, Bioinformatics, vol. 27, no. 21, pp. 3036–3043, 2011, DOI: 10.1093/bioinformatics/btr500.
A. Ezzat, M. Wu, X.-L. Li, C.-K. Kwoh“, Drug–target interaction prediction via class imbalance-aware ensemble learning”, BMC Bioinformatics, vol. 17, no. 19, pp. 509, 2016, DOI: 10.1186/s12859-016-1377-y.
A.C. Nascimento, R.B. Prudêncio, I.G. Costa, “A multiple kernel learning algorithm for drug–target interaction prediction,” BMC Bioinformatics, vol. 17, pp. 46 2016, DOI: 10.1186/s12859-016-0890-3.
W. Lan, J. Wang, M. Li, J. Liu, Y. Li, et al., “Predicting drug–target interaction using positive - unlabeled learning”, Neurocomputing, vol. 206, pp. 50–57, 2016, DOI: 10.1016/j.neucom.2016.03.080.
Z. Li, P. Han, Z.-H. You, X. Li, Y. Zhang, H. Yu, et al., “In silico prediction of drug-target interaction networks based on drug chemical structure and protein sequences,” Scientific Reports, vol. 7, no. 1, pp. 11174, 2017, DOI: 10.1038/s41598-017-10724-0.
M. Ohue, T. Yamazaki, T. Ban, Y. Akiayama, “Link mining for kernel based compound–protein interaction predictions using a chemogenomics approach”, In: International Conference on Intelligent Computing, Springer, Cham, Switzerland, 2017, pp. 549–558, DOI: 10.1007/978-3-319-63312-1_48.
J. Zhang, M. Zhu, P. Chen, B. Wang, “DrugRPE: random projection ensemble approach to drug–target interaction prediction”, Neurocomputing, vol. 228, pp. 256–262, 2017, DOI: 10.1016/j.neucom.2016.10.039.
F. Rayhan, S. Ahmed, S. Shatabda, et al., “iDTI-ESBoost: identification of drug target interaction using evolutionary and structural features with boosting”, Scientific Reports, vol. 7, no. 1, pp. 17731, 2017, DOI: 10.1038/s41598-017-18025-2.
A. Sharma, R. Rani, “BE-DTI: ensemble framework for drug target interaction prediction using dimensionality reduction and active learning”, Computer Methods and Programs in Biomedicine, vol. 165, pp. 151–162, 2018, DOI: 10.1016/j.cmpb.2018.08.011.
F. Cheng, C. Liu, J. Jiang, et al., “Prediction of drug–target interactions and drug repositioning via network-based inference,” PLOS Computational Biology, vol. 8, no. 5, pp. e10025032012, 2012, DOI: 10.1371/journal.pcbi.1002503.
X. Chen, M.-X. Liu, G.-Y. Yan, “Drug–Target Interaction prediction by random walk on the heterogeneous network,” Molecular Biosystems, vol. 8, no. 7, pp. 1970–1978, 2012, DOI: 10.1039/C2M00002D.
H. Chen, Z. Zhang, “A semi-supervised method for drug–target interaction prediction with consistency in networks”, PloS One, vol. 8, no. 5, pp. e62975, 2013, DOI: 10.1371/joural.poe.0062975.
L. Peng, B. Liao, W. Zhu, Z. Li, K. Li, “Predicting drug–target interactions with multi-information fusion”, IEEE Journal of Biomedical and Health Informatics, vol. 21, no. 2, pp. 561–572, 2015, DOI: 10.1109/ JBHI.2015.2513200.
A. Seal, Y.-Y. Ahn, D.J. Wild, “Optimizing drug–target interaction prediction based on random walk on heterogeneous networks”, Journal of Cheminformatics, vol. 7, no. 1, pp. 40, 2015, DOI: 10.1186/s13321-015- 0089-z.
Y. Huang, L. Zhu, H. Tan, et al., “Predicting drug-target on heterogeneous network with co-rank,” In: International Conference on Computer Engineering and Networks, Springer, Cham, Switzerland, 2018, pp. 571– 581, DOI: 10.1007/978-3-030-14680-1_63.
T. Ban, M. Ohue, Y. Akiyama, “NRLMFβ: beta-distribution rescored neighborhood regularized logistic matrix factorization for improving the performance of drug–target interaction prediction,” Biochemistry and Biophysics Reports, vol. 18, pp. 100615, 2019, DOI: 10.1016/j.bbrep.2019.01.008.
M. Wen, Z. Zhang, S. Niu, et al., “Deep-learning-based drug– target interaction prediction”, Journal of Proteome Research, vol. 16, no. 4, pp. 1401–1409, 2017, DOI:1 0.1186/s12911-020-1052-0.
H. Öztürk, A. Özgür, E. Ozkirimli, “DeepDTA: deep drug–target binding affinity prediction”, Bioinformatics, vol. 34, no. 17, pp. i821–i829, 2018, DOI: 10.1093/bioinformatics/bty593.
L. Wang, Z.-H. You, X. Chen, et al, “A computational-based method for predicting drug–target interactions by using stacked autoencoder deep neural network,” Journal of Computational Biology, vol. 25, no. 3, pp. 361–373, 2018, DOI: 10.1089/cmb.2017.0135.
J. You, R.D. McLeod, P. Hu, “Predicting drug–target interaction network using deep learning model,” Computational Biology Chemistry, vol. 80, pp. 90–101, 2019, DOI: 10.1016/j.compbiolchem.2019.03.016.
I. Lee, J. Keum, H. Nam, “DeepConv-DTI: prediction of drug-target interactions via deep learning with convolution on protein sequences”, PLoS Computational Biology, vol. 15, no. 6, pp. e1007129, 2019, DOI: 10.1371/journal.pcbi.1007129.
M. Kanehisa, M. Araki, S. Goto, et al., “KEGG for linking genomes to life and the environment,” Nucleic Acids Research, vol. 36, pp. D480–484, 2007, DOI: 10.1093/nar/gkm882.
M. Kanehisa, S. Goto, M. Hattori, M. Araki, M. Hirakawa, “From genomics to chemical genomics: new developments in KEGG,” Nucleic Acids Research, vol. 34, pp. D354–D357, 2006, DOI: 10.1093/nar/gkj102.
A. Gaulton, A. Hersey, M. Nowotka, et al., “The ChEMBL database in 2017,” Nucleic Acids Research, vol. 45, no. D1, pp. D945–954, 2016, DOI: 10.1093/nar/gkw1074.
J. Kringelum, S.K. Kjaerulff, S. Brunak, et al., “ChemProt-3.0: a global chemical biology diseases mapping”, Database: the journal of biology databases and curation, vol. 2016 pp. bav123, 2016, DOI: 10.1093/database/bav123.
A.H. Wagner, A.C. Coffman, B.J. Ainscough, et al, “DGIdb 2.0: mining clinically relevant drug–gene interactions”, Nucleic Acids Research, vol. 44, no. D1, pp. D1036–1044, 2016, DOI: 10.1093/nar/gkv1165.
D.S. Wishart, Y.D. Feunang, A.C. Guo, et al., “Drugbank 5.0: a major update to the drugbank database for 2018”, Nucleic Acids Research, vol. 46, no. D1, pp. D1074–1082, 2017, DOI: 10.1093/nar/gkx1037.
M. Kanehisa, M. Furumichi, M. Tanabe, et al., “KEGG: new perspectives on genomes, pathways, diseases and drugs”, Nucleic Acids Research, vol. 45, no. D1, pp. D353–361, 2016, DOI: 10.1093/nar/gkw1092.
HMS_LINCS: LINCS Pilot Phase Joint Project: Sensitivity measures of six breast cancer cell lines to a library of small molecule kinase inhibitors (drug combination treatments). Dataset 2 of 2: Mean cell count and mean normalized growth rate inhibition values across technical replicates, 2016.
J. Von Eichborn, M.S. Murgueitio, M. Dunkel, S. Koerner, P.E. Bourne, R. Preissner, “PROMISCUOUS: a database for network-based drugrepositioning”, Nucleic Acids Research, vol. 36, Jan 2011, DOI: 10.1093/nar/gkq1037.
D. Szklarczyk, A. Santos, C. Von Mering, et al., “STITCH 5: augmenting protein–chemical interaction networks with tissue and affinity data”, Nucleic Acids Research, vol. 44, no. D1, pp. D380–384, 2015, DOI: 10.1093/nar/gkv1277.
S. Günther, M. Kuhn, M. Dunkel, et al., “Supertarget and matador: resources for exploring drug-target relationships”, Nucleic Acids Research, vol. 36, pp. D919–922, 2008, DOI: 10.1093/nar/gkm862.
X. Chen, Z.L. Ji, Y.Z. Chen, “TTD: therapeutic target database”, Nucleic Acids Research, vol. 30, no. 1, pp: 412–415, 2002, DOI: 10.1093/nar/30.1.412.
L. Jeske, S. Placzek, I. Schomburg, et al., “Brenda in 2019: a European ELIXIR core data resource”, Nucleic Acids Research, vol. 47, no. D1, pp. D542–549, 2019, DOI: 10.1093/nar/gky1048.
O. Ursu, J. Holmes, C.G. Bologa, et al., “DrugCentral 2018: an update,” Nucleic Acids Research, vol. 47, no. D1, pp. D963–970, 2018, DOI: 10.1093/nar/gky963.
C. Wang, G. Hu, K. Wang, et al., “PDID: database of molecular level putative protein–drug interactions in the structural human proteome”, Bioinformatics, vol. 32, no. 4, pp: 579–586, 2016, DOI: 10.1093/bioinformatics/btv597.
D.-T. Nguyen, S. Mathias, C. Bologa, et al., “Pharos: collating protein information to shed light on the druggable genome”, Nucleic Acids Research, vol. 45, no. D1, pp. D995–D1002, 2017, DOI: 10.1093/nar/ gkw1072.
S. Kim, P.A. Thiessen, E.E. Bolton, et al., “PubChem substance and compound databases”, Nucleic Acids Research, vol. 44, no. D1, pp. D1202–1213, 2016, DOI: 10.1093/nar/gkv951.
V.B. Siramshetty, O.A. Eckert, B.-O. Gohlke, et al, “SuperDRUG2: a one stop resource for approved/marketed drugs”, Nucleic Acids Research, vol. 46, no. D1, pp. D1137–1143, 2018, DOI: 10.1093/nar/gkx1088.
H. Fang, Z. Su, Y. Wang, A. Miller, Z. Liu, P. C. Howard, W. Tong, & S. M. Lin, “Exploring the FDA adverse event reporting system to generate hypotheses for monitoring of disease characteristics”, Clinical pharmacology and therapeutics, vol. 95, no. 5, pp. 496–498, 2014, DOI: 10.1038/clpt.2014.17.
M. Kuhn, I. Letunic, L.J. Jensen, P. Bork, “The SIDER database of drugs and side effects,” Nucleic Acid Research, vol. 44, no. D1, pp. D1075-1079, 2015, DOI: 10.1093/nar/gkv1075.
A.J. Pawson, J.L. Sharman, H.E. Benson, et al., “The IUPHAR/BPS guide to pharmacology: an expert-driven knowledgebase of drug targets and their ligands,” Nucleic Acids Research, vol. 42, no. D1, pp. D1098–1106, 2013, DOI: 10.1093/nar/gkt1143.
R. Kumar, K. Chaudhary, S. Gupta, et al., “CancerDR: Cancer Drug Resistance Database”, Scientific Reports, vol. 3, pp. 1445, 2013, DOI: 10.1038/srep01445.
M.K. Gilson, T. Liu, M. Baitaluk, et al., “BindingDB in 2015: a public database for medicinal chemistry, computational chemistry and systems pharmacology,” Nucleic Acids Research, vol. 44, no. D1, pp. D1045–1053, 2016, DOI: 10.1093/nar/gkv1072.
T. Sterling and J.J. Irwin, “ZINC- Ligand Discovery for Everyone,” Journal of Chemical Information and modelling, vol. 55, no. 11, pp. 2324- 2337, 2015, DOI: 10.1021/acs.jcim.5b00559.
B.L. Roth, W.K. Kroeze, S. Patel, E. Lopez, “PDSP Ki -The Multiplicity of Serotonin Receptors: Uselessly diverse molecules or an embarrassment of riches?”, The Neuroscientist, vol. 6, pp. 252–262, 2000, DOI: 10.1177/107385840000600408.
Y. Yamanishi, M. Kotera, M. Kanehisa, S. Goto, “Drug–target interaction prediction from chemical, genomic and pharmacological data in an integrated framework,” Bioinformatics, vol. 26, no. 12, pp. i246–i254, 2010, DOI: 10.1093/bioinformatics/btq176.
R. San-Miguel Carrasco, “Detection of Adverse Reaction to Drugs in Elderly Patients through Predictive Modeling”, International Journal of Interactive Multimedia and Artificial Intelligence, vol. 3, no. 6, pp. 52-56, 2016, DOI: 10.9781/ijimai.2016.368.
Downloads
Published
-
Abstract233
-
PDF29