Improvement of Academic Analytics Processes Through the Identification of the Main Variables Affecting Early Dropout of First-Year Students in Technical Degrees. A Case Study.

Authors

  • A. Llauró Ramón Llull University.
  • D. Fonseca Ramón Llull University.
  • E. Villegas Ramón Llull University.
  • M. Aláez University of Deusto.
  • S. Romero University of Deusto.

DOI:

https://doi.org/10.9781/ijimai.2023.06.002

Keywords:

Academic Analytics, Dropout, Students Interaction, Learning Analytics, Prediction, Intelligent Tutoring Systems

Abstract

The field of research on the phenomenon of university dropout and the factors that promote it is of the utmost relevance, especially in the current context of the Covid-19 pandemic. Students who have started degrees in the last two years have completed their university studies in periods of lockdown and unlike traditional education, this has often involved taking online classes. In this scenario, the students' motivation and the way they are able to cope with the difficulties of the first year of a university course are very relevant, especially in technical degrees. Previous studies show that a large number of undergraduate students drop out prematurely. In order to act to reduce dropout rates, schools, especially technical schools, should be able to map the entry profile of students and identify the factors that promote early dropout. This paper focuses on identifying, categorizing and evaluating a number of indicators according to the perception of tutors and the field of study, based on the application of quantitative and qualitative techniques. The results support the approach taken, as they show how tutors can identify students at risk of dropping out at the beginning of the course and act proactively to monitor and motivate them.

Downloads

Download data is not yet available.

References

F. J. García-Peñalvo, “Digital Transformation in the Universities: Implications of the COVID-19 Pandemic,” Transformación digital en las universidades: Implicaciones de la pandemia de la COVID-19, Feb. 2021, Accessed: Mar. 02, 2022. [Online]. Available: https://repositorio.grial.eu/handle/grial/2230

T. Knopik and U. Oszwa, “E-cooperative problem solving as a strategy for learning mathematics during the COVID-19 pandemic,” Education in the Knowledge Society (EKS), vol. 22, pp. e25176–e25176, Dec. 2021, doi: 10.14201/eks.25176.

F. J. García-Peñalvo, A. Corell, V. Abella-García, and M. Grande, “Online assessment in higher education in the time of COVID-19,” Education in the Knowledge Society, vol. 21, 2020.

F. J. García-Peñalvo, A. Corell, V. Abella-García, and M. Grande-de-Prado, “Recommendations for Mandatory Online Assessment in Higher Education During the COVID-19 Pandemic,” in Radical Solutions for Education in a Crisis Context: COVID-19 as an Opportunity for Global Learning, D. Burgos, A. Tlili, and A. Tabacco, Eds., in Lecture Notes in Educational Technology. Singapore: Springer, 2021, pp. 85–98. doi: 10.1007/978-981-15-7869-4_6.

J. P. Azevedo, A. Hasan, D. Goldemberg, S. A. Iqbal, and K. Geven, “Simulating the Potential Impacts of COVID-19 School Closures on Schooling and Learning Outcomes: A Set of Global Estimates,” World Bank, Washington, DC, Working Paper, Jun. 2020. doi: 10.1596/1813-9450-9284.

J. G. Fuenmayor and C. M. Bolaños, “Estrategias de aprendizaje para mitigar la deserción estudiantil en el marco de la COVID-19,” SUMMA. Revista disciplinaria en ciencias económicas y sociales, vol. 2, pp. 49–55, Sep. 2020, doi: 10.47666/summa.2.esp.06.

G. Jacobo-Galicia, A. I. Máynez-Guaderrama, and J. Cavazos-Arroyo, “Miedo al Covid, agotamiento y cinismo: su efecto en la intención de abandono universitario,” European Journal of Education and Psychology, vol. 14, no. 1, pp. 1–18, Mar. 2021, doi: 10.32457/ejep.v14i1.1432.

G. W. Dekker, M. Pechenizkiy, and J. M. Vleeshouwers, “Predicting Students Drop Out: A Case Study.,” International Working Group on Educational Data Mining, 2009.

B. Pérez, C. Castellanos, and D. Correal, “Predicting student drop-out rates using data mining techniques: A case study,” in IEEE Colombian Conference on Applications in Computational Intelligence, Springer, 2018, pp. 111–125.

D. Bustamante and O. Garcia-Bedoya, “Predictive Academic Performance Model to Support, Prevent and Decrease the University Dropout Rate,” in International Conference on Applied Informatics, Springer, 2021, pp. 222–236.

Á. Choi de Mendizábal and J. Calero Martínez, “Determinantes del riesgode fracaso escolar en España en PISA-2009 y propuestas de reforma,” Revista de Educación, no. 362, 2013, doi: 10.4438/1988-592X-RE-2013-362-242.

J. M. Guio-Jaimes and A. Choi-de-Mendizábal, “The Evolution of School Failure Risk During the 2000 Decade in Spain: Analysis of PISA Results with a Two-Level Logistic Model,” Evolución del riesgo de fracaso escolar en España durante la década del 2000: Análisis de los resultados de PISA con un modelo logístico de dos niveles, 2014, Accessed: Mar. 01, 2022. [Online]. Available: https://dadun.unav.edu/handle/10171/36784

E. Corominas Rovira, “La transición de los estudios universitarios: Abandono o cambio en el primer año de Universidad,” Revista de investigación educativa, RIE, vol. 19, no. 1. pp. 127–152, 2001.

J. A. Pérez García, J. Hernández Armenteros, and Conferencia de Rectores de las Universidades Españolas, La universidad española en cifras 2017/2018. Madrid: CRUE, 2020.

C. M. Fourie, “Risk factors associated with first-year students’ intention to drop out from a university in South Africa,” Journal of Further and Higher Education, vol. 44, no. 2, pp. 201–215, 2020.

S. C. Wolter, A. Diem, and D. Messer, “Drop-outs from S wiss Universities: an empirical analysis of data on all students between 1975 and 2008,” European Journal of Education, vol. 49, no. 4, pp. 471–483, 2014.

M. S. A. Taipe and D. M. Sánchez, “Prediction of university dropout through technological factors: a case study in Ecuador,” p. 7.

J. A. Z. Araya and F. J. V. Madrigal, “Factors associated with dropping out of the program for Bachelor’s and Licentiate’s Degrees in Mathematics Teaching at the Universidad Nacional de Costa Rica (UNA): Evidence from the 2016 Student Cohort,” Uniciencia, vol. 32, no. 2 (July-December), pp. 111–126, 2018.

C. V. Porras, D. I. Parra, and Z. M. R. Díaz, “Factores relacionados con la intención de desertar en estudiantes de enfermería.: Factors relating to nurse students intending to drop out.,” Revista Ciencia y Cuidado, pp. 86–97, Jan. 2019, doi: 10.22463/17949831.1545.

J. Gairín, X. M. Triado, M. Feixas, P. Figuera, P. Aparicio-Chueca, and M. Torrado, “Student dropout rates in Catalan universities: profile and motives for disengagement,” Quality in Higher Education, vol. 20, no. 2, pp. 165–182, May 2014, doi: 10.1080/13538322.2014.925230.

Á. Choi and J. Calero, “Early School Dropout in Spain: Evolution During the Great Recession,” in European Youth Labour Markets, M. Á. Malo and A. Moreno Mínguez, Eds., Cham: Springer International Publishing, 2018, pp. 143–156. doi: 10.1007/978-3-319-68222-8_10.

J. D. Corral, J. L. González-Quejigo, and M. Villasalero, “Análisis del abandono universitario en la universidad de castilla-la mancha: resultados del proyecto Alfa Guía,” Congresos CLABES, 2015, Accessed: Mar. 01, 2022. [Online]. Available: https://revistas.utp.ac.pa/index.php/clabes/article/view/1097

A. G. de Fanelli and C. A. de Deane, “Abandono de los estudios universitarios: dimensión, factores asociados y desafíos para la política pública,” Revista Fuentes, no. 16, Art. no. 16, 2015.

C. Burgos, M. L. Campanario, D. de la Peña, J. A. Lara, D. Lizcano, and M. A. Martínez, “Data mining for modeling students’ performance: A tutoring action plan to prevent academic dropout,” Computers & Electrical Engineering, vol. 66, pp. 541–556, 2018, doi: https://doi.org/10.1016/j.compeleceng.2017.03.005.

Méndez-Ortega, L. A. Urbina-Nájera, A. B., “Predictive Model for Taking Decision to Prevent University Dropout,” International Journal Of Interactive Multimedia And Artificial Intelligence, vol. In press, no. In press, pp. 1–9, 2022, doi: http://doi.org/10.9781/ijimai.2022.01.006.

Alonso-Misol Gerlache, H., Moreno-Ger, P., & de-la-Fuente Valentín, L., “Towards the Grade’s Prediction. A Study of Different Machine Learning Approaches to Predict Grades from Student Interaction Data,” International Journal Of Interactive Multimedia And Artificial Intelligence, vol. In press, no. In press, pp. 1–9, 2022, doi: http://doi.org/10.9781/ijimai.2021.11.007.

D. A. Filvà, M. A. Forment, F. J. García-Peñalvo, D. F. Escudero, and M. J. Casañ, “Clickstream for learning analytics to assess students’ behavior with Scratch,” Future Generation Computer Systems, vol. 93, pp. 673–686, Apr. 2019, doi: 10.1016/j.future.2018.10.057.

F. J. García-Peñalvo, “Avoiding the Dark Side of Digital Transformation in Teaching. An Institutional Reference Framework for eLearning in Higher Education,” Sustainability, vol. 13, no. 4, Art. no. 4, Jan. 2021, doi: 10.3390/su13042023.

R. Ferguson, “Learning analytics: drivers, developments and challenges,” International Journal of Technology Enhanced Learning, vol. 4, no. 5–6, pp. 304–317, Jan. 2012, doi: 10.1504/IJTEL.2012.051816.

A. H. Duin and J. Tham, “The Current State of Analytics: Implicationsfor Learning Management System (LMS) Use in Writing Pedagogy,” Computers and Composition, vol. 55, p. 102544, Mar. 2020, doi: 10.1016/j.compcom.2020.102544.

A. Y. Q. Huang, O. H. T. Lu, J. C. H. Huang, C. J. Yin, and S. J. H. Yang, “Predicting students’ academic performance by using educational big data and learning analytics: evaluation of classification methods and learning logs,” Interactive Learning Environments, vol. 28, no. 2, pp. 206–230, Feb. 2020, doi: 10.1080/10494820.2019.1636086.

R. S. Baker and P. S. Inventado, “Educational Data Mining and Learning Analytics,” in Learning Analytics: From Research to Practice, J. A. Larusson and B. White, Eds., New York, NY: Springer, 2014, pp. 61–75. doi: 10.1007/978-1-4614-3305-7_4.

A. Balderas, M. Palomo-Duarte, J. Antonio Caballero-Hernández, M. Rodriguez-Garcia, and J. Manuel Dodero, “Learning Analytics to Detect Evidence of Fraudulent Behaviour in Online Examinations.,” International Journal of Interactive Multimedia & Artificial Intelligence, vol. 7, no. 2, 2021.

R. Ferguson, “Learning analytics: Drivers, developments and challenges,” International Journal of Technology Enhanced Learning, vol. 4, no. 5–6, pp. 304–317, 2012, doi: 10.1504/IJTel.2012.051816.

G. Siemens and P. Long, “Penetrating the Fog: Analytics in Learning andEducation,” EDUCAUSE Review, vol. 46, no. 5, p. 30, 2011.

M. Á. Conde and Á. Hernández-García, “A promised land for educational decision-making? present and future of learning analytics,” in Proceedings of the First International Conference on Technological Ecosystem for Enhancing Multiculturality, in TEEM ’13. New York, NY, USA: Association for Computing Machinery, Nov. 2013, pp. 239–243. doi: 10.1145/2536536.2536573.

H. Waheed, S.-U. Hassan, N. R. Aljohani, J. Hardman, S. Alelyani, and R. Nawaz, “Predicting academic performance of students from VLE big data using deep learning models,” Computers in Human Behavior, vol. 104, p. 106189, Mar. 2020, doi: 10.1016/j.chb.2019.106189.

P. J. Goldstein and R. N. Katz, Academic analytics: The uses of management information and technology in higher education, vol. 8. Educause, 2005.

P. Baepler and C. Murdoch, “Academic Analytics and Data Mining in Higher Education,” International Journal for the Scholarship of Teaching and Learning, 2010, doi: 10.20429/ijsotl.2010.040217.

J. P. Campbell, P. B. DeBlois, and D. G. Oblinger, “Academic Analytics: A New Tool for a New Era,” Educause Review, 2007.

M. A. Chatti, A. L. Dyckhoff, U. Schroeder, and H. Thüs, “A reference model for learning analytics,” International Journal of Technology Enhanced Learning, vol. 4, no. 5–6, pp. 318–331, Jan. 2012, doi: 10.1504/IJTEL.2012.051815.

E. P. Camarilla, D. F. Escudero, and N. M. Audí, “Relationship between specific professional competences and learning activities of the building and construction engineering degree final project,” The International journal of engineering education, vol. 34, no. 3, pp. 924–939, 2018.

E. Peña, D. Fonseca, and N. Martí, “Relationship between learning indicators in the development and result of the building engineering degree final project,” in ACM International Conference Proceeding Series, 2016, pp. 335–340. doi: 10.1145/3012430.3012537.

D. Fonseca, N. Martí, E. Redondo, I. Navarro, and A. Sánchez, “Relationship between student profile, tool use, participation, and academic performance with the use of Augmented Reality technology for visualized architecture models,” Computers in Human Behavior, vol. 31, no. 1, pp. 434–445, 2014, doi: 10.1016/j.chb.2013.03.006.

U. bin Mat, N. Buniyamin, P. M. Arsad, and R. Kassim, “An overview of using academic analytics to predict and improve students’ achievement: A proposed proactive intelligent intervention,” in 2013 IEEE 5th Conference on Engineering Education (ICEED), Dec. 2013, pp. 126–130. doi: 10.1109/ICEED.2013.6908316.

S. Palmer, “Modelling engineering student academic performance using academic analytics,” International journal of engineering education, vol. 29, no. 1, pp. 132–138, Jan. 2013.

N. Yusuf, “The Effect of Online Tutoring Applications on Student Learning Outcomes during the COVID-19 Pandemic,” ITALIENISCH, vol. 11, no. 2, pp. 81–88, 2021.

D. Pérez-Jorge, M. del C. Rodríguez-Jiménez, E. Ariño-Mateo, and F. Barragán-Medero, “The effect of covid-19 in university tutoring models, Sustainability, vol. 12, no. 20, p. 8631, 2020.

C. Chabbott and M. Sinclair, “SDG 4 and the COVID-19 emergency: Textbooks, tutoring, and teachers,” Prospects, vol. 49, no. 1, pp. 51–57, 2020.

K. S. C. Tragodara, “Virtual tutoring from the comprehensive training model to Engineering students during the COVID-19 pandemic,” in 2021 IEEE World Conference on Engineering Education (EDUNINE), IEEE, 2021, pp. 1–6.

C. Johns and M. Mills, “Online mathematics tutoring during the COVID-19 pandemic: recommendations for best practices,” Primus, vol. 31, no. 1, pp. 99–117, 2021.

T. Button and R. Lissaman, “Using live online tutoring to provide access to higher level Mathematics for pre-university students,” in The 10th International Conference on Technology in Mathematics Teaching, 2011, p. 94.

J. Hofmeister, “Evaluation research findings of the pre-university project on transition and student mentoring into University,” Mentoring and tutoring by students, pp. 107–117, 1998.

S. E. Volet and P. D. Renshaw, “Cross-cultural differences in university students’ goals and perceptions of study settings for achieving their own goals,” Higher Education, vol. 30, no. 4, pp. 407–433, 1995.

S. B. Kotsiantis and P. E. Pintelas, “Predicting students marks in hellenic open university,” in Fifth IEEE International Conference on Advanced Learning Technologies (ICALT’05), IEEE, 2005, pp. 664–668.

J. L. Arco-Tirado, F. D. Fernández-Martín, and J.-M. Fernández-Balboa, “The impact of a peer-tutoring program on quality standards in higher education,” Higher Education, vol. 62, no. 6, pp. 773–788, 2011.

D. J. Goldsmith, D. Nielsen, G. Rezendes, and C. A. Manly, “Basic eSkills–Foundation or Frustration: A Research Study of Entering Community College Students’ Computer Competency.,” Online Submission, 2006.

S. Rodríguez Espinar and M. Álvarez González, Manual de tutoría universitaria recursos para la acción. Barcelona: Editorial Octaedro : Universitat de Barcelona, Institut de Ciències de l’Educació, 2012.

J. A. Ross, “Teacher Efficacy and the Effects of Coaching on Student Achievement,” Canadian Journal of Education / Revue canadienne de l’éducation, vol. 17, no. 1, pp. 51–65, 1992, doi: 10.2307/1495395.

J. D. Baker, S. A. Rieg, and T. Clendaniel, “An Investigation of an after School Math Tutoring Program: University Tutors + Elementary Students = A Successful Partnership,” Education, vol. 127, no. 2, pp. 287–293, 2006.

G. Villa Fernández, J. A. Montero Morales, and A. Llauró Moliner, “Educational coaching applied to group tutoring sessions: An experience with first-year engineering students,” in Eighth International Conference on Technological Ecosystems for Enhancing Multiculturality, in TEEM’20. New York, NY, USA: Association for Computing Machinery, Oct. 2020, pp. 339–344. doi: 10.1145/3434780.3436588.

S. E. Volet, “Modelling and coaching of relevant metacognitive strategies for enhancing university students’ learning,” Learning and instruction, vol. 1, no. 4, pp. 319–336, 1991.

D. Fonseca, J. A. Montero, M. Guenaga, and I. Mentxaka, “Data analysis of coaching and advising in undergraduate students. An analytic approach,” in International Conference on Learning and Collaboration Technologies, Springer, 2017, pp. 269–280.

A. Llauró, D. Fonseca, E. Villegas, M. Aláez, and S. Romero, “Educational data mining application for improving the academic tutorial sessions, and the reduction of early dropout in undergraduate students,” in Ninth International Conference on Technological Ecosystems for Enhancing Multiculturality (TEEM’21), 2021, pp. 212–218.

J. Nielsen, “The usability engineering life cycle,” Computer, 1992, doi: 10.1109/2.121503.

R. S. Adams and C. J. Atman, “Cognitive processes in iterative design behavior,” in FIE’99 Frontiers in Education. 29th Annual Frontiers in Education Conference. Designing the Future of Science and Engineering Education. Conference Proceedings (IEEE Cat. No.99CH37011, Nov. 1999, p. 11A6/13-11A6/18 vol.1. doi: 10.1109/FIE.1999.839114.

B. Gros and E. Durall, “Retos y oportunidades del diseño participativo en tecnología educativa,” Edutec. Revista Electrónica de Tecnología Educativa, no. 74, Art. no. 74, Dec. 2020, doi: 10.21556/edutec.2020.74.1761.

British Design Council, “Design Methods for developing services,” An introduction to service design and a selection of service design tools, pp. 1–23, 2007.

C. M. Barnum, Ed., “Praise for Usability Testing Essentials,” in Usability Testing Essentials, Boston: Morgan Kaufmann, 2011, p. i. doi: 10.1016/B978-0-12-375092-1.00023-4.

M. Esteban, A. Bernardo, and L. Rodríguez-Muñiz, “Persistence in university studies: The importance of a good start,” Aula Abierta, vol. 44, p. 1, Dec. 2016, doi: 10.17811/rifie.44.2016.1-6.

F. Araque, C. Roldán, and A. Salguero, “Factors influencing university drop out rates,” Computers & Education, vol. 53, no. 3, pp. 563–574, Nov. 2009, doi: 10.1016/j.compedu.2009.03.013.

R. Gilar-Corbi, T. Pozo-Rico, J.-L. Castejón, T. Sánchez, I. Sandoval-Palis, and J. Vidal, “Academic Achievement and Failure in University Studies: Motivational and Emotional Factors,” Sustainability, vol. 12, no. 23, Art. no. 23, Jan. 2020, doi: 10.3390/su12239798.

A. Merlino, S. Ayllón, and G. Escanés, “Variables que influyen en la deserción de estudiantes universitarios de primer año. Construcción de índices de riesgo de abandono / Variables that influence first year university students’ dropout rates. Construction of dropout risk indexes,” Actualidades Investigativas en Educación, vol. 11, no. 2, Art. no. 2, Sep. 2011, doi: 10.15517/aie.v11i2.10189.

J. Escobar-Pérez and Á. Cuervo-Martínez, “Validez de contenido y juicio de expertos: una aproximación a su utilización,” Avances en medición, vol. 6, no. 1, pp. 27-36, 2008.

J. L. Rodríguez, El método Delphi: una técnica de previsión para la incertidumbre. Ariel, 1999. Accessed: Mar. 08, 2022. [Online]. Available: https://dialnet.unirioja.es/servlet/libro?codigo=208626

J. C. Almenara and J. B. Osuna, “La utilización del juicio de experto para la evaluación de tic: el coeficiente de competencia experta,” Bordón. Revista de Pedagogía, vol. 65, no. 2, Art. no. 2, Jun. 2013.

M. R. Amaya, D. P. da S. S. da Paixão, L. M. M. Sarquis, and E. D. de A. Cruz, “Construção e validação de conteúdo de checklist para a segurança do paciente em emergência,” Rev. Gaúcha Enferm., vol. 37, no. spe, 2016, doi: 10.1590/1983-1447.2016.esp.68778.

E. C. Viera, M. T. A. Robles, F. J. G. Fuentes-Guerra, and J. R. Rodríguez, “Diseño de un cuestionario sobre hábitos de actividad física y estilo de vida a partir del método Delphi,” E-Balonmano.com: Revista de Ciencias del Deporte, vol. 8, no. 1, Art. no. 1, Feb. 2012.

M. Varela-Ruiz, L. Díaz-Bravo, and R. García-Durán, “Descripción y usos del método Delphi en investigaciones del área de la salud,” Investigación en educación médica, vol. 1, no. 2, pp. 90–95, Jun. 2012.

J. C. Almenara and A. I. Moro, “Empleo del método Delphi y su empleo en la investigación en comunicación y educación,” Edutec. Revista Electrónica de Tecnología Educativa, no. 48, 2014, doi: 10.21556/edutec.2014.48.187.

M. R. Álvarez and M. Torrado-Fonseca, “El mètode Delphi,” REIRE Revista d’Innovació i Recerca en Educació, vol. 9, no. 1, Jan. 2016, doi: 10.1344/reire2016.9.1916.

J. R. G. Fernández, “Análisis del fenómeno del abandono de los estudiosen el Curso de Acceso Directo para mayores de 25 años de la UNED,” http://purl.org/dc/dcmitype/Text, UNED. Universidad Nacional de Educación a Distancia, 1989. Accessed: Mar. 01, 2022. [Online]. Available: https://dialnet.unirioja.es/servlet/tesis?codigo=42402

A. Constate-Amores, E. Florenciano Martínez, E. Navarro Asencio, and M. Fernández-Mellizo, “Factores asociados al abandono universitario,” Educación XX1, vol. 24, no. 1, Nov. 2020, doi: 10.5944/educxx1.26889.

G. de Fanelli and A. M, “Acceso, abandono y graduación en la educación superior argentina,” Serie Debate;5,2007, 2007, Accessed: Mar. 01, 2022. [Online]. Available: http://repositorio.cedes.org/handle/123456789/3699

J. La Madriz, “Factors That Promote the Defection of the Virtual Classroom,” Orbis, Revista Científica Ciencias Humanas, vol. 12, no. 35, pp. 18–40, 2016.

C. Luck, “Challenges faced by tutors in Higher Education,” Psychodynamic Practice, vol. 16, no. 3, pp. 273–287, Aug. 2010, doi: 10.1080/14753634.2010.489386.

A. B. U. Nájera, J. de la Calleja, "Selection of academic tutors in higher education using decision trees," Revista Española de Orientación y Psicopedagogía, vol. 29, no. 1, pp. 108-124, 2018.

A. Casquero-Tomás, J. Sanjuán-Solís, and A. Antúnez-Torres, “School Dropout by Gender in the European Union: Evidence from Spain,” Abandono escolar en función del sexo en la Unión Europea: evidencias sobre España, 2012, Accessed: Mar. 01, 2022. [Online]. Available: https:// dadun.unav.edu/handle/10171/27638

OECD, PISA 2018 Results (Volume VI): Are Students Ready to Thrive in an Interconnected World? Paris: Organisation for Economic Co-operation and Development, 2020. Accessed: May 11, 2023. [Online]. Available: https://www.oecd-ilibrary.org/education/pisa-2018-results-volume-vi_d5f68679-en

R. Z. Oré Ortega, “Comprensión lectora, hábitos de estudio y rendimiento académico en estudiantes de primer año de una universidad privada de Lima Metropolitana,” Universidad Nacional Mayor de San Marcos, 2012, Accessed: May 11, 2023. [Online]. Available: https://cybertesis.unmsm.edu.pe/handle/20.500.12672/11512

W. Soto and N. Rocha, “Hábitos de estudio: factor crucial para el buen rendimiento académico,” Revista Innova Educación, vol. 2, no. 3, 2020, doi: 10.35622/j.rie.2020.03.004.

A. V. Arguilès, “Del abandono de estudios a la reubicación universitaria,” Revista de Sociología de la Educación-RASE, vol. 3, no. 2, 2010, doi: 10.7203/RASE.3.2.8705.

M. Esteban, A. Bernardo, E. Tuero, A. Cervero, and J. Casanova, “Variables influyentes en progreso académico y permanencia en la universidad,” European Journal of Education and Psychology, vol. 10, no. 2, pp. 75–81, Dec. 2017, doi: 10.1016/j.ejeps.2017.07.003.

M. (Marina) Elias-Andreu, “Los abandonos universitarios: retos ante el espacio europeo de educación superior,” 2008, Accessed: Mar. 01, 2022. [Online]. Available: https://dadun.unav.edu/handle/10171/9139

G. B. Alvarado, “Urban mobility and personal safety as factors related to the decision of dropping out from university,” Universidad y Sociedad, vol. 13, no. 5, 2021.

J. Hernández Armenteros, J.A. Pérez García, "La Universidad Española en Cifras. 2017-2018," Spain: Conferencia de Rectores de las Universidades Españolas, ISBN: 978-84-09-18182-7, 2020.

C. Brez, E. M. Hampton, L. Behrendt, L. Brown, and J. Powers, “Failure to Replicate: Testing a Growth Mindset Intervention for College Student Success,” Basic and Applied Social Psychology, vol. 42, no. 6, pp. 460–468, Nov. 2020, doi: 10.1080/01973533.2020.1806845.

R. Gilar-Corbi, T. Pozo-Rico, and J. L. Castejón-Costa, “Desarrollando la Inteligencia Emocional en Educación Superior: evaluación de la efectividad de un programa en tres países.,” Educación XX1, vol. 22, no. 1, Art. no. 1, 2019, doi: 10.5944/educxx1.19880.

R. Gilar, T. Pozo-Rico, B. Sanchez, and J. L. Castejón, “Promote learning in emotional competence across an e-learning context for higher education,” INTED2018 Proceedings, pp. 1374–1380, 2018.

Downloads

Published

2024-12-01
Metrics
Views/Downloads
  • Abstract
    200
  • PDF
    23

How to Cite

Llauró, A., Fonseca, D., Villegas, E., Aláez, M., and Romero, S. (2024). Improvement of Academic Analytics Processes Through the Identification of the Main Variables Affecting Early Dropout of First-Year Students in Technical Degrees. A Case Study. International Journal of Interactive Multimedia and Artificial Intelligence, 9(1), 92–103. https://doi.org/10.9781/ijimai.2023.06.002