Machine Learning for Financial Prediction Under Regime Change Using Technical Analysis: A Systematic Review.
DOI:
https://doi.org/10.9781/ijimai.2023.06.003Keywords:
Concept Drift, Finance, Machine Learning, Metamodel, Regime Change, Systematic ReviewAbstract
Recent crises, recessions and bubbles have stressed the non-stationary nature and the presence of drastic structural changes in the financial domain. The most recent literature suggests the use of conventional machine learning and statistical approaches in this context. Unfortunately, several of these techniques are unable or slow to adapt to changes in the price-generation process. This study aims to survey the relevant literature on Machine Learning for financial prediction under regime change employing a systematic approach.
It reviews key papers with a special emphasis on technical analysis. The study discusses the growing number of contributions that are bridging the gap between two separate communities, one focused on data stream learning and the other on economic research. However, it also makes apparent that we are still in an early stage. The range of machine learning algorithms that have been tested in this domain is very wide, but the results of the study do not suggest that currently there is a specific technique that is clearly dominant.
Downloads
References
Y. S. Abu-Mostafa, A. F. Atiya, “Introduction to financial forecasting,” Applied Intelligence, vol. 6, pp. 205–213, 7 1996.
W. Huang, Y. Nakamori, S.-Y. Wang, “Forecasting stock market movement direction with support vector machine,” Computers & Operations Research, vol. 32, pp. 2513–2522, 2005.
R. C. Cavalcante, R. C. Brasileiro, V. L. F. Souza, J. P. Nobrega, A. L. I. Oliveira, “Computational Intelligence and Financial Markets: A Survey and Future Directions,” Expert Systems with Applications, vol. 55, pp. 194–211, 8 2016.
V. Dogra, S. Verma, Kavita, N. Z. Jhanjhi, U. Ghosh, D. N. Le, “A Comparative Analysis of Machine Learning Models for Banking News Extraction by Multiclass Classification With Imbalanced Datasets of Financial News: Challenges and Solutions,” International Journal of Interactive Multimedia and Artificial Intelligence, vol. 7, no. 3, pp. 35–52, 2022, doi: 10.9781/ijimai.2022.02.002.
M. W. Hsu, S. Lessmann, M. C. Sung, T. Ma, J. E. Johnson, “Bridging the divide in financial market forecasting: machine learners vs. financial economists,” Expert Systems with Applications, vol. 61, pp. 215–234, 2016.
B. M. Henrique, V. A. Sobreiro, H. Kimura, “Literature review: Machine learning techniques applied to financial market prediction,” Expert Systems with Applications, vol. 124, pp. 226–251, 2019.
G. S. Atsalakis, K. P. Valavanis, “Surveying stock market forecasting techniques - Part II: Soft computing methods,” Expert Systems with Applications, vol. 36, pp. 5932-59-41, 4 2009.
M.-Y. Chen, A. K. Sangaiah, T.-H. Chen, E. D. Lughofer, E. Egrioglu, “Deep learning for financial engineering,” Computational Economics, pp. 1–5, 2022.
A. M. Ozbayoglu, M. U. Gudelek, O. B. Sezer, “Deep learning for financial applications: A survey,” Applied Soft Computing, vol. 93, p. 106384, 2020, doi: https://doi.org/10.1016/j.asoc.2020.106384.
M. Ballings, D. Van Den Poel, N. Hespeels, R. Gryp, “Evaluating multiple classifiers for stock price direction prediction,” Expert Systems with Applications, vol. 42, no. 20, pp. 7046–7056, 2015.
A. Booth, E. Gerding, F. McGroarty, “Automated trading with performance weighted random forests and seasonality,” Expert Systems with Applications, vol. 41, pp. 3651–3661, 6 2014.
P. Ładyżyński, K. Żbikowski, P. Grzegorzewski, “Stock trading with random forests, trend detection tests and force index volume indicators,” in Artificial Intelligence and Soft Computing: 12th International Conference, ICAISC 2013, Proceedings, Part II, Berlin, Heidelberg, Jun. 2013, pp. 441–452, Springer Berlin Heidelberg.
J. Patel, S. Shah, P. Thakkar, K. Kotecha, “Predicting stock and stock price index movement using trend deterministic data preparation and machine learning techniques,” Expert Systems with Applications, vol. 42, no. 1, pp. 259–268, 2015, doi: https://doi.org/10.1016/j.eswa.2014.07.040.
D. Ardia, K. Bluteau, M. Rüede, “Regime changes in Bitcoin GARCH volatility dynamics,” Finance Research Letters, vol. 29, pp. 266–271, Jun. 2019, doi: 10.1016/J.FRL.2018.08.009.
A. Ang, A. Timmermann, “Regime changes and financial markets,”Annual Review of Financial Economics, vol. 4, no. 1, pp. 313–337, 2012.
A. Tsymbal, “The Problem of Concept Drift: Definitions and Related Work,” Technical Report: TCD-CS-2004-15, Department of Computer Science Trinity College, Dublin, 2004.
A. L. Suárez-Cetrulo, A. Cervantes, D. Quintana, “Incremental Market Behavior Classification in Presence of Recurring Concepts,” Entropy, vol. 21, p. 25, Jan. 2019, doi: 10.3390/e21010025.
M. C. Münnix, T. Shimada, R. Schäfer, F. Leyvraz, T. H. Seligman, T. Guhr, H. E. Stanley, “Identifying States of a Financial Market,” Scientific Reports, vol. 2, p. 644, 12 2012.
E. Tsang, J. Chen, Detecting regime change in computational finance: data science, machine learning and algorithmic trading. CRC Press, 2020.
R. T. Das, K. K. Ang, C. Quek, “IeRSPOP: A novel incremental rough set-based pseudo outer-product with ensemble learning,” Applied Soft Computing Journal, vol. 46, pp. 170–186, 9 2016.
V. Vella, W. L. Ng, “Enhancing risk-adjusted performance of stock market intraday trading with Neuro-Fuzzy systems,” Neurocomputing, vol. 141, pp. 170–187, 2014.
Y. Hu, K. Liu, X. Zhang, K. Xie, W. Chen, Y. Zeng, M. Liu, “Concept drift mining of portfolio selection factors in stock market,” Electronic Commerce Research and Applications, vol. 14, no. 6, pp. 444–455, 2015.
B. Silva, N. Marques, G. Panosso, “Applying neural networks for concept drift detection in financial markets,” in CEUR Workshop Proceedings, vol. 960, 2012, pp. 43–47.
X. Gu, P. P. Angelov, A. M. Ali, W. A. Gruver, G. Gaydadjiev, “Online evolving fuzzy rule-based prediction model for high frequency trading financial data stream,” in 2016 IEEE Conference on Evolving and Adaptive Intelligent Systems (EAIS), 5 2016, pp. 169–175, IEEE.
E. F. Fama, “Efficient Capital Markets: A Review of Theory and Empirical Work,” The Journal of Finance, vol. 25, no. 2, p. 383, 1970, doi: 10.2307/2325486.
J. Piger, Econometrics: Models of Regime Changes, pp. 2744–2757. New York, NY: Springer New York, 2009.
A. G. Hoepner, D. McMillan, A. Vivian, Wese Simen, “Significance, relevance and explainability in the machine learning age: an econometrics and financial data science perspective,” The European Journal of Finance, vol. 27, no. 1-2, pp. 1–7, 2021.
P. Bracke, A. Datta, C. Jung, S. Sen, “Machine learning explainability in finance: an application to default risk analysis,” Bank of England, 2019.
M. Kritzman, S. Page, D. Turkington, “Regime shifts: Implications for dynamic strategies (corrected),” Financial Analysts Journal, vol. 68, no. 3, pp. 22–39, 2012.
R. Elwell, R. Polikar, “Incremental learning of concept drift in nonstationary environments.,” IEEE transactions on neural networks, vol. 22, pp. 1517–31, 10 2011.
J. A. Gama, I. Žliobaitundefined, A. Bifet, M. Pechenizkiy, A. Bouchachia, “A survey on concept drift adaptation,” ACM Computing Surveys, vol. 46, Mar. 2014, doi: 10.1145/2523813.
G. Ditzler, M. Roveri, C. Alippi, R. Polikar, “Learning in nonstationary environments: A survey,” IEEE Computational Intelligence Magazine, vol. 10, pp. 12–25, Nov. 2015.
G. I. Webb, R. Hyde, H. Cao, H. L. Nguyen, F. Petitjean, “Characterizing concept drift,” Data Mining and Knowledge Discovery, vol. 30, pp. 964–994, 7 2016.
H. M. Gomes, J. P. Barddal, F. Enembreck, A. Bifet, “A Survey on Ensemble Learning for Data Stream Classification,” ACMComputing Surveys, vol. 50, no. 2, pp. 1–36, 2017, doi: 10.1145/3054925.
S. Ramírez-Gallego, B. Krawczyk, S. García, M. Woźniak, F. Herrera, “A survey on data preprocessing for data stream mining: Current status and future directions,” Neurocomputing, vol. 239, pp. 39–57, 2017.
A. R. Masegosa, A. M. Martínez, D. Ramos-López, H. Langseth, T. D. Nielsen, A. Salmerón, “Analyzing concept drift: A case study in the financial sector,” Intelligent Data Analysis, vol. 24, no. 3, pp. 665–688, 2020.
M. Pratama, E. Lughofer, J. Er, S. Anavatti, C.-P. Lim, “Data driven modelling based on Recurrent Interval-Valued Metacognitive Scaffolding Fuzzy Neural Network,” Neurocomputing, vol. 262, pp. 4–27, 2017.
M. Pratama, J. Lu, E. Lughofer, G. Zhang, M. J. Er, “Incremental Learning of Concept Drift Using Evolving Type-2 Recurrent Fuzzy Neural Network,” IEEE Transactions on Fuzzy Systems, pp. 1–1, 2016, doi: 10.1109/TFUZZ.2016.2599855.
C. Alippi, G. Boracchi, M. Roveri, “Just-in-time classifiers for recurrent concepts,” IEEE Transactions on Neural Networks and Learning Systems, vol. 24, pp. 620–634, 4 2013.
J. B. Gomes, M. M. Gaber, P. A. C. Sousa, E. Menasalvas, “Mining recurring concepts in a dynamic feature space,” IEEE Transactions on Neural Networks and Learning Systems, vol. 25, pp. 95–110, 1 2014, doi: 10.1109/TNNLS.2013.2271915.
P. M. Gonçalves Jr, R. Souto, M. De Barros, “RCD: A recurring concept drift framework,” Pattern Recognition Letters, vol. 34, pp. 1018–1025, 2013.
A. W. Lo, H. Mamaysky, J. Wang, “Foundations of Technical Analysis: Computational Algorithms, Statistical Inference, and Empirical Implementation,” The Journal of Finance, vol. 55, pp. 1705–1765, 8 2000.
F. E. Tay, L. Cao, “Application of support vector machines in financial time series forecasting,” Omega, vol. 29, pp. 309–317, 8 2001.
T. Geva, J. Zahavi, “Empirical evaluation of an automated intraday stock recommendation system incorporating both market data and textual news,” Decision Support Systems, vol. 57, pp. 212–223, Jan. 2014, doi: 10.1016/J.DSS.2013.09.013.
C. H. Chen, P. Y. Chen, J. C. W. Lin, “An Ensemble Classifier for Stock Trend Prediction Using Sentence- Level Chinese News Sentiment and Technical Indicators,” International Journal of Interactive Multimedia and Artificial Intelligence, vol. 7, no. 3, pp. 53–64, 2022, doi: 10.9781/ijimai.2022.02.004.
B. Kitchenham, O. P. Brereton, D. Budgen, M. Turner, J. Bailey, S. Linkman, “Systematic literature reviews in software engineering–a systematic literature review,” Information and software technology, vol. 51, no. 1, pp. 7– 15, 2009.
B. Kitchenham, “Procedures for performing systematic reviews,” Keele, UK, Keele University, vol. 33, no. 2004, pp. 1–26, 2004.
M. J. Page, J. E. McKenzie, P. M. Bossuyt, I. Boutron, T. C. Hoffmann, C. D. Mulrow, L. Shamseer, J. M. Tetzlaff, E. A. Akl, S. E. Brennan, et al., “The prisma 2020 statement: an updated guideline for reporting systematic reviews,” Systematic reviews, vol. 10, no. 1, pp. 1–11, 2021.
A. W. Lo, “Reconciling efficient markets with behavioral finance: the adaptive markets hypothesis,” Journal of investment consulting, vol. 7, no. 2, pp. 21–44, 2005.
S. Baek, S. K. Mohanty, M. Glambosky, “Covid-19 and stock market volatility: An industry level analysis,” Finance Research Letters, vol. 37, p. 101748, 2020.
M. L. De Prado, Advances in financial machine learning. John Wiley & Sons, 2018.
A. Ang, G. Bekaert, “How regimes affect asset allocation,” Financial Analysts Journal, vol. 60, no. 2, pp. 86–99, 2004.
G. Davies, “Regime changes in the financial markets,” 2016. [Online]. Available: https://www.ft.com/content/6556ec60-6aa3-3dfe- 8953-b94d6080c360.
E. Andreou, E. Ghysels, Structural Breaks in Financial Time Series, pp. 839–870. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009.
A. Samitas, E. Kampouris, D. Kenourgios, “Machine learning as an early warning system to predict financial crisis,” International Review of Financial Analysis, vol. 71, p. 101507, 2020.
D. Pettenuzzo, A. Timmermann, “Predictability of stock returns and asset allocation under structural breaks,” Journal of Econometrics, vol. 164, pp. 60–78, Sep. 2011, doi: 10.1016/j.jeconom.2011.02.019.
A. W. Lo, “The Adaptive Markets Hypothesis: Market Efficiency from an Evolutionary Perspective,” MIT, 2004.
J. D. Hamilton, “A new approach to the economic analysis of nonstationary time series and the business cycle,” Econometrica: Journal of the econometric society, pp. 357–384, 1989.
J. D. Hamilton, “Regime switching models,” in Macroeconometrics and time series analysis, Springer, 2010, pp. 202–209.
T. Preis, J. J. Schneider, H. E. Stanley, “Switching processes in financial markets,” Proceedings of the National Academy of Sciences, vol. 108, no. 19, pp. 7674–7678, 2011, doi: 10.1073/pnas.1019484108/-/DCSupplemental.
R. Hammerschmid, H. Lohre, “Regime shifts and stock return predictability,” International Review of Economics and Finance, vol. 56, pp. 138–160, Jul. 2018, doi: 10.1016/j.iref.2017.10.021.
Q. Dai, K. J. Singleton, W. Yang, “Is regime-shift risk priced in the us treasury market?,” Working paper, New York University and Stanford University, 2003.
J. D. Hamilton, “Macroeconomic regimes and regime shifts,” Handbook of macroeconomics, vol. 2, pp. 163– 201, 2016.
J. G. Dias, J. K. Vermunt, S. Ramos, “Clustering financial time series: New insights from an extended hidden markov model,” European Journal of Operational Research, vol. 243, no. 3, pp. 852–864, 2015.
K.-S. Kim, I. Han, “The cluster-indexing method for case-based reasoning using self-organizing maps and learning vector quantization for bond rating cases,” Expert systems with applications, vol. 21, no. 3, pp. 147– 156, 2001.
R. Bisoi, P. K. Dash, “A hybrid evolutionary dynamic neural network for stock market trend analysis and prediction using unscented kalman filter,” Applied Soft Computing, vol. 19, pp. 41–56, 2014.
M. Guidolin, A. Timmermann, “An econometric model of nonlinear dynamics in the joint distribution of stock and bond returns,” Journal of Applied Econometrics, vol. 21, pp. 1–22, Jan. 2006, doi: 10.1002/jae.824.
A. Urquhart, F. McGroarty, “Are stock markets really efficient? evidence of the adaptive market hypothesis,” International Review of Financial Analysis, vol. 47, pp. 39–49, 2016, doi: https://doi.org/10.1016/j.irfa.2016.06.011.
N. G. Pavlidis, V. P. Plagianakos, D. K. Tasoulis, M. N. Vrahatis, “Financial forecasting through unsupervised clustering and neural networks,” Operational Research, vol. 6, no. 2, pp. 103–127, 2006.
A. A. Ariyo, A. O. Adewumi, C. K. Ayo, “Stock price prediction using the ARIMA model,” in 2014 UKSim-AMSS 16th International Conference on Computer Modelling and Simulation, 2014, pp. 106–112, IEEE.
S. Choudhury, S. Ghosh, A. Bhattacharya, K. J. Fernandes, M. K. Tiwari, “A real time clustering and SVM based price-volatility prediction for optimal trading strategy,” Neurocomputing, vol. 131, pp. 419– 426, 5 2014.
S.-H. Park, J.-H. Lee, J.-W. Song, T.-S. Park, “Forecasting change directions for financial time series using hidden Markov model,” in International Conference on Rough Sets and Knowledge Technology, 2009, pp. 184–191, Springer.
J. Sirignano, R. Cont, “Universal features of price formation in financial markets: perspectives from deep learning,” Quantitative Finance, 2019, doi: 10.1080/14697688.2019.1622295.
G. Deboeck, Trading on the edge: neural, genetic, and fuzzy systems for chaotic financial markets. Wiley, 1994.
S. Schulmeister, “Profitability of technical stock trading: Has it moved from daily to intraday data?,” Review of Financial Economics, vol. 18, no. 4, pp. 190– 201, 2009, doi: 10.1016/j.rfe.2008.10.001.
T. Shintate, L. Pichl, “Trend Prediction Classification for High Frequency Bitcoin Time Series with Deep Learning,” Journal of Risk and Financial Management, vol. 12, p. 17, Jan. 2019, doi: 10.3390/jrfm12010017.
B. G. Malkiel, “The efficient market hypothesis and its critics,” Journal of economic perspectives, vol. 17, no. 1, pp. 59–82, 2003.
A. W. Lo, A. C. MacKinlay, A Non-Random Walk Down Wall Street. Princeton University Press, Dec. 2011.
X. Ding, Y. Zhang, T. Liu, J. Duan, “Using structured events to predict stock price movement: An empirical investigation,” in Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), 2014, pp. 1415–1425.
F. Black, “Noise,” The Journal of Finance, vol. 41, 529–543, Jul. 1986, doi: 10.1111/j.1540- 6261.1986.tb04513.x.
B. Malkiel, A Random Walk Down Wall Street. WW Norton & Company, 1973.
B. Vanstone, G. Finnie, “An empirical methodology for developing stockmarket trading systems using artificial neural networks,” Expert Systems with Applications, vol. 36, no. 3, Part 2, pp. 6668–6680, 2009, doi: https://doi.org/10.1016/j.eswa.2008.08.019.
S. Carta, A. Corriga, A. Ferreira, A. S. Podda, D. R. Recupero, “A multi-layer and multi-ensemble stock trader using deep learning and deep reinforcement learning,” Applied Intelligence, vol. 51, no. 2, pp. 889–905, 2021.
C. Martín, D. Quintana, P. Isasi, “Grammatical evolution-based ensembles for algorithmic trading,” Applied Soft Computing, vol. 84, p. 105713, 2019, doi: https://doi.org/10.1016/j.asoc.2019.105713.
C. Chen, W. Dongxing, H. Chunyan, Y. Xiaojie, “Exploiting social media for stock market prediction with factorization machine,” in 2014 IEEE/WIC/ACM International Joint Conferences on Web Intelligence (WI) and Intelligent Agent Technologies (IAT), vol. 2, 2014, pp. 142–149, IEEE.
M. R. Hassan, K. Ramamohanarao, J. Kamruzzaman, M. Rahman, M. M. Hossain, “A hmm-based adaptive fuzzy inference system for stock market forecasting,” Neurocomputing, vol. 104, pp. 10–25, 2013.
X. Zhang, Y. Li, S. Wang, B. Fang, S. Y. Philip, “Enhancing stock market prediction with extended coupled hidden Markov model over multi-sourced data,” Knowledge and Information Systems, vol. 61, no. 2, pp. 1071–1090, 2019.
N. Gârleanu, L. H. Pedersen, “Efficiently inefficient markets for assetsand asset management,” The Journal of Finance, vol. 73, no. 4, pp. 1663–1712, 2018.
G. C. Friesen, P. A. Weller, L. M. Dunham, “Price trends and patterns in technical analysis: A theoretical and empirical examination,” Journal of Banking and Finance, vol. 33, pp. 1089–1100, Jun. 2009, doi: 10.1016/j.jbankfin.2008.12.010.
C. F. Liu, C. Y. Yeh, S. J. Lee, “Application of type- 2 neuro-fuzzy modeling in stock price prediction,” Applied Soft Computing Journal, vol. 12, no. 4, pp. 1348– 1358, 2012, doi: 10.1016/j.asoc.2011.11.028.
R. C. Cavalcante, A. L. Oliveira, “An autonomous trader agent for the stock market based on online sequential extreme learning machine ensemble,” in 2014 International Joint Conference on Neural Networks (IJCNN), 2014, pp. 1424–1431, IEEE.
R. Garcia, R. Luger, E. Renault, “Empirical assessment of an intertemporal option pricing model with latent variables,” Journal of Econometrics, vol. 116, no. 1-2, pp. 49–83, 2003.
R. Dash, P. K. Dash, R. Bisoi, “A self adaptive differential harmony search based optimized extreme learning machine for financial time series prediction,” Swarm and Evolutionary Computation, vol. 19, pp. 25– 42, 2014.
A. A. Adebiyi, C. K. Ayo, M. O. Adebiyi, S. O. Otokiti, “Stock price prediction using neural network with hybridized market indicators,” Journal of Emerging Trends in Computing and Information Sciences, vol. 3, no. 1, pp. 1–9, 2012.
R. Tsaih, Y. Hsu, C. C. Lai, “Forecasting S&P 500 stock index futures with a hybrid AI system,” Decision Support Systems, vol. 23, pp. 161–174, 6 1998.
J. C. Neves, A. Vieira, “Improving bankruptcy prediction with hidden layer learning vector quantization,” European Accounting Review, vol. 15, no. 2, pp. 253–271, 2006.
Y. L. Yong, Y. Lee, X. Gu, P. P. Angelov, D. C. L. Ngo, E. Shafipour, “Foreign currency exchange rate prediction using neuro-fuzzy systems,” Procedia computer science, vol. 144, pp. 232–238, 2018.
H. Ghoddusi, G. G. Creamer, N. Rafizadeh, “Machine learning in energy economics and finance: A review,” Energy Economics, vol. 81, pp. 709–727, 2019, doi: https://doi.org/10.1016/j.eneco.2019.05.006.
F. Rundo, F. Trenta, A. L. di Stallo, S. Battiato, “Machine learning for quantitative finance applications: A survey,” Applied Sciences, vol. 9, no. 24, p. 5574, 2019.
Z. Lin, “Modelling and forecasting the stock market volatility of SSE Composite Index using GARCH models,” Future Generation Computer Systems, vol. 79, pp. 960–972, 2018.
M. Frömmel, K. Lampaert, “Does frequency matter for intraday technical trading?,” Finance Research Letters, vol. 18, pp. 177–183, 2016.
M. Schreyer, T. Sattarov, A. Gierbl, B. Reimer, Borth, “Learning sampling in financial statement audits using vector quantised variational autoencoder neural networks,” in Proceedings of the First ACM International Conference on AI in Finance, 2020, pp. 1– 8.
R. I. Webb, D. D. Ryu, D. D. Ryu, J. Han, “The price impact of futures trades and their intraday seasonality,” Emerging Markets Review, vol. 26, pp. 80– 98, 2016, doi: 10.1016/j.ememar.2016.01.002.
P. Bacchetta, E. Mertens, E. Van Wincoop, “Predictability in financial markets: What do survey expectations tell us?,” Journal of International Money and Finance, vol. 28, no. 3, pp. 406–426, 2009.
L. Ryll, S. Seidens, “Evaluating the performance of machine learningalgorithms in financial market forecasting: A comprehensive survey,” arXiv preprint arXiv:1906.07786, 2019.
A. M. Rather, A. Agarwal, V. Sastry, “Recurrent neural network and a hybrid model for prediction of stock returns,” Expert Systems with Applications, vol. 42, no. 6, pp. 3234–3241, 2015.
J. P. Serbera, P. Paumard, “The fall of high-frequency trading: A survey of competition and profits,” Research in International Business and Finance, vol. 36, pp. 271–287, 2016, doi: 10.1016/j.ribaf.2015.09.021.
S. Alonso-Monsalve, A. L. Suárez-Cetrulo, A. Cervantes, D. Quintana, “Convolution on neural networks for high-frequency trend prediction of cryptocurrency exchange rates using technical indicators,” Expert Systems with Applications, 1 2020.
A. W. Li, G. S. Bastos, “Stock market forecasting using deep learning and technical analysis: a systematic review,” IEEE Access, vol. 8, pp. 185232–185242, 2020.
J. Patel, S. Shah, P. Thakkar, K. Kotecha, “Predicting stock market index using fusion of machine learning techniques,” Expert Systems with Applications, vol. 42, pp. 2162–2172, 3 2015.
M. Pratama, S. G. Anavatti, P. P. Angelov, E. Lughofer, “PANFIS: A novel incremental learning machine,” IEEE Transactions on Neural Networks and Learning Systems, vol. 25, pp. 55–68, 1 2014.
G. Widmer, M. Kubat, “Learning in the presence of concept drift and hidden contexts,” Machine Learning, vol. 23, no. 1, pp. 69–101, 1996, doi: 10.1007/BF00116900.
D. Sahoo, Q. Pham, J. Lu, S. C. Hoi, “Online deep learning: Learning deep neural networks on the fly,” in Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence IJCAI 2018, Jul. 2018, pp. 2660–2666.
A. L. D. Rossi, B. F. De Souza, C. Soares, A. de Leon Ferreira de Carvalho, C. Ponce, “A guidance of data stream characterization for meta-learning,” Intelligent Data Analysis, vol. 21, no. 4, pp. 1015–1035, 2017.
C. Käding, E. Rodner, A. Freytag, J. Denzler, “Fine- tuning deep neural networks in continuous learning scenarios,” in Computer Vision – ACCV 2016 Workshops, Cham, 2017, pp. 588–605, Springer International Publishing.
P. P. Angelov, Empirical Approach to Machine Learning. Springer, 2017.
B. Krawczyk, L. L. Minku, J. Gama, J. Stefanowski, M. Woźniak, M. Wó Zniak, “Ensemble learning for data stream analysis: A survey,” Information Fusion, vol. 37, pp. 132–156, 2017.
R. D. Baruah, P. Angelov, “Evolving fuzzy systems for data streams: A survey,” Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, vol. 1, pp. 461–476, 11 2011.
M. Pratama, S. G. Anavatti, M. Joo, E. D. Lughofer, “pclass: An effective classifier for streaming examples,” IEEE Transactions on Fuzzy Systems, vol. 23, pp. 369–386, Apr. 2015, doi: 10.1109/TFUZZ.2014.2312983.
M. Á. Abad, J. B. Gomes, E. Menasalvas, “Predicting recurring concepts on data-streams by means of a meta-model and a fuzzy similarity function,” Expert Systems With Applications, vol. 46, pp. 87–105, 2015, doi: 10.1016/j.eswa.2015.10.022.
J. Read, “Concept-drifting data streams are time series; the case for continuous adaptation,” arXiv preprint arXiv:1810.02266, 2018.
H. M. Gomes, J. Read, A. Bifet, J. P. Barddal, J. Gama, “Machine learning for streaming data: state of the art, challenges, and opportunities,” ACM SIGKDD Explorations Newsletter, vol. 21, no. 2, pp. 6–22, 2019, doi: 10.1145/3373464.3373470.
X. Zheng, P. Li, X. Hu, K. Yu, “Semi-supervised classification on data streams with recurring concept drift and concept evolution,” Knowledge-Based Systems, vol. 215, p. 106749, 2021.
M. Pratama, J. Lu, E. Lughofer, G. Zhang, S. Anavatti, “Scaffolding type-2 classifier for incremental learning under concept drifts,” Neurocomputing, vol. 191, pp. 304–329, 2016.
E. Lughofer, P. Angelov, “Handling drifts and shifts in on-line data streams with evolving fuzzy systems,” Appl. Soft Comput., vol. 11, pp. 2057–2068, Mar. 2011, doi: 10.1016/j.asoc.2010.07.003.
Ł. Korycki, B. Krawczyk, “Streaming decision trees for lifelong learning,” in Joint European Conference on Machine Learning and Knowledge Discovery in Databases, 2021, pp. 502–518, Springer.
S. U. Din, J. Shao, “Exploiting evolving micro-clusters for data stream classification with emerging class detection,” Information Sciences, vol. 507, pp. 404–420, 2020.
R. Szadkowski, J. Drchal, J. Faigl, “Continually trained life-long classification,” Neural Computing and Applications, pp. 1–18, 2021.
N. Kasabov, D. Filev, “Evolving intelligent systems: Methods, learning, applications,” in 2006 International Symposium on Evolving Fuzzy Systems, Sept 2006, pp. 8– 18.
S.-s. Zhang, J.-w. Liu, X. Zuo, “Adaptive online incremental learning for evolving data streams,” Applied Soft Computing, vol. 105, p. 107255, 2021.
M. Mermillod, A. Bugaiska, P. Bonin, “The stability- plasticity dilemma: Investigating the continuum from catastrophic forgetting to age-limited learning effects,” Frontiers in psychology, vol. 4, p. 504, 2013.
E. Lughofer, Evolving fuzzy systems-methodologies, advanced concepts and applications, vol. 53. Springer, 2011.
M. Carnein, H. Trautmann, “Optimizing data stream representation: An extensive survey on stream clustering algorithms,” Business & Information Systems Engineering, vol. 61, no. 3, pp. 277–297, 2019.
A. Bifet, R. Gavaldà, G. Holmes, B. Pfahringer, Machine learning for data streams: with practical examples in MOA. MIT press, 2018.
K. Namitha, G. Santhosh Kumar, “Learning in the presence of concept recurrence in data stream clustering,” Journal of Big Data, vol. 7, p. 75, Dec. 2020, doi: 10.1186/s40537-020-00354-1.
J. Gama, R. Sebastiao, P. P. Rodrigues, “On evaluating stream learning algorithms,” Machine learning, vol. 90, no. 3, pp. 317–346, 2013.
L. Yang, S. McClean, M. Donnelly, K. Burke, K. Khan, “Detecting and responding to concept drift in business processes,” Algorithms, vol. 15, no. 5, 2022, doi: 10.3390/a15050174.
G. Sateesh Babu, S. Suresh, G.-B. Huang, “Meta- cognitive Neural Network for classification problems in a sequential learning framework,” Neurocomputing, vol. 81, pp. 86–96, 2011.
A. Maslov, M. Pechenizkiy, I. Žliobaite ̇, T. Kärkkäinen, “Modelling recurrent events for improving online change detection,” in Proceedings of the 2016 SIAM International Conference on Data Mining, 2016, pp. 549– 557, SIAM.
P. P. Angelov, D. P. Filev, “An approach to online identification of takagi-sugeno fuzzy models,” Trans. Sys. Man Cyber. Part B, vol. 34, pp. 484–498, Feb. 2004, doi: 10.1109/TSMCB.2003.817053.
C. W. Chiu, L. L. Minku, “A diversity framework for dealing with multiple types of concept drift based on clustering in the model space,” IEEE Transactions on Neural Networks and Learning Systems, 2020.
A. L. Suárez-Cetrulo, A. Cervantes, “An online classification algorithm for large scale data streams: igngsvm,” Neurocomputing, vol. 262, pp. 67–76, 2017, doi: https://doi.org/10.1016/j.neucom.2016.12.093.
E. Lughofer, C. Cernuda, S. Kindermann, M. Pratama, “Generalized smart evolving fuzzy systems,” Evolving Systems, vol. 6, no. 4, pp. 269–292, 2015, doi: 10.1007/s12530-015-9132-6.
P. E. Tsinaslanidis, D. Kugiumtzis, “A prediction scheme using perceptually important points and dynamic time warping,” Expert Systems with Applications, vol. 41, no. 15, pp. 6848–6860, 2014, doi: https://doi.org/10.1016/j.eswa.2014.04.028.
C. Martin, D. Quintana, P. Isasi, “Dynamic generation of investment recommendations using grammatical evolution.,” International Journal of Interactive Multimedia & Artificial Intelligence, vol. 6, no. 6, 2021.
B. Grün, “Model-Based Clustering,” Handbook of Mixture Analysis, pp. 157–192, Feb. 2019, doi: 10.1201/9780429055911-8.
P. D. McNicholas, “Model-based clustering,” Journal of Classification, vol. 33, no. 3, pp. 331–373, 2016.
F. Dellaert, “The expectation maximization algorithm,” Georgia Institute of Technology, 2002.
J. Vanschoren, J. N. Van Rijn, B. Bischl, L. Torgo, “Openml: networked science in machine learning,” ACM SIGKDD Explorations Newsletter, vol. 15, no. 2, pp. 49–60, 2014.
P. P. Angelov, X. Zhou, “Evolving fuzzy-rule-based classifiers from data streams,” IEEE Transactions on Fuzzy Systems, vol. 16, pp. 1462–1475, Dec. 2008, doi: 10.1109/TFUZZ.2008.925904.
O. Cordón, F. Gomide, F. Herrera, F. Hoffmann, L. Magdalena, “Ten years of genetic fuzzy systems: Current framework and new trends,” in Fuzzy Sets and Systems, vol. 141, 2004, pp. 5–31.
Downloads
Published
-
Abstract309
-
PDF179