GRASE: Granulometry Analysis With Semi Eager Classifier to Detect Malware.

Authors

  • Mahendra Deore Cummins College of Engineering for Women (India).
  • Manoj Tarambale PVG’s COET and GKP IOM (India).
  • Jambi Ratna Raja Kumar Genba Sopanrao Moze College of Engineering (India).
  • Sachin Sakhare Vishwakarma Institute of Information Technology (india).

DOI:

https://doi.org/10.9781/ijimai.2023.12.002

Keywords:

Malware, Semi Eager Classification (Semi-E), Granulometry Analysis, Static and Dynamic Analysis

Abstract

Technological advancement in communication leading to 5G, motivates everyone to get connected to the internet including ‘Devices’, a technology named Web of Things (WoT). The community benefits from this large-scale network which allows monitoring and controlling of physical devices. But many times, it costs the security as MALicious softWARE (MalWare) developers try to invade the network, as for them, these devices are like a ‘backdoor’ providing them easy ‘entry’. To stop invaders from entering the network, identifying malware and its variants is of great significance for cyberspace. Traditional methods of malware detection like static and dynamic ones, detect the malware but lack against new techniques used by malware developers like obfuscation, polymorphism and encryption. A machine learning approach to detect malware, where the classifier is trained with handcrafted features, is not potent against these techniques and asks for efforts to put in for the feature engineering. The paper proposes a malware classification using a visualization methodology wherein the disassembled malware code is transformed into grey images. It presents the efficacy of Granulometry texture analysis technique for improving malware classification. Furthermore, a Semi Eager (SemiE) classifier, which is a combination of eager learning and lazy learning technique, is used to get robust classification of malware families. The outcome of the experiment is promising since the proposed technique requires less training time to learn the semantics of higher-level malicious behaviours. Identifying the malware (testing phase) is also done faster. A benchmark database like malimg and Microsoft Malware Classification challenge (BIG-2015) has been utilized to analyse the performance of the system. An overall average classification accuracy of 99.03 and 99.11% is achieved, respectively.

Downloads

Download data is not yet available.

References

G. Ekta, B. Divya, S. Sanjeev, “Malware Analysis and Classification: A Survey,” Journal of Information Security, vol. 5, no. 2, pp. 56-64, 2014.

M. Deore, U. Kulkarni, “MDFRCNN: Malware Detection using Faster Region Proposals Convolution Neural Network,” International Journal of Interactive Multimedia and Artificial Intelligence, vol. 7, no. 4, pp. 146- 162, 2022.

E. Bou-Harb, M. Debbabi, and C. Assi, “Cyber Scanning: A Comprehensive Survey,” IEEE Communications Surveys & Tutorials, vol. 16, no. 3, Third Quarter, 2014.

M. Dhalaria, E. Gandotra, “A Hybrid Approach for Android Malware Detection and Family Classification,” International Journal of Interactive Multimedia and Artificial Intelligence, vol. 6, no. 6, pp. 174-188, 2021.

P. Kupidura, “Wykorzystanie granulometrii obrazowej w klasyfikacji treści zdjęć satelitarnych,” Prace Naukowe Politechniki Warszawskiej. Geodezja, 2015.

P. Kupidura, M. Skulimowska, “Morphological profile and granulometric maps in extraction of buildings in VHR satellite images,” Archives of Photogrammetry, Cartography and Remote Sensing, pp. 83–96, 2015.

P. Kupidura, P. Koza, J. Marciniak, “Morfologia Matematyczna w Teledetekcji,” PWN: Warsaw, Poland, 2010.

A. Haas, G. Matheron, J. Serra, “MorphologieMathématique et granulométriesen place. Ann. Des Mines,” vol. 12, pp. 768–782, 1967.

E.R. Dougherty, J.B. Pelz, F. Sand, A, Lent, “Morphological Image Segmentation by Local Granulometric Size Distributions,” Journal of Electronic Imaging, vol. 1, pp. 46–60, 1992.

A. Zakai and Y. Ritov, “Consistency and localizability,” Journal of Machine Learning Research (JMLR), vol. 10, pp. 827–856, 2019.

N. Cao and W. Cui, Introduction to Text Visualization, Atlantis Press, Paris, 2016.

D. Keim, “Information visualization and visual data mining,” IEEE Transactions on Visualization and Computer Graphics, vol.8, no.1, pp.1– 8, 2002.

S. Few, “Information Dashboard Design - The Effective Visual Communication of Data, Sebastopol,” CA: O’Reilly, 2006.

I. Yoo, “Visualizing windows executable viruses using self-organizing maps,” VizSEC/DMSEC ‘04: Proceedings of the 2004 ACM workshop on Visualization and data mining for computer security, pp. 82-89. 10.1145/1029208.1029222, 2004.

S. Foresti, J. Agutter, Y. Livnat, S. Moon, and R. Erbacher, “Visual correlation of network alerts,” IEEE Computer Graphics and Applications, vol. 26, no. 2, pp. 48–59, 2006.

M. G. Schultz, E. Eskin, F. Zadok, S. J. Stolfo, “Data mining methods for detection of new malicious executables,” in: Proceedings 2001 IEEE Symposium on Security and Privacy. S&P 2001, Oakland, CA, USA, pp. 38-49, 2001.

D. A. Quist and L. M. Liebrock, “Visualizing compiled executables for malware analysis,” 6th International Workshop on Visualization for Cyber Security, Atlantic City, NJ, pp. 27-32, 2009.

H. Shiravi, A. Shiravi, and A. A. Ghorbani, “A survey of visualization systems for network security,” IEEE Transactions on Visualization and Computer Graphics, vol. 18, no. 8, pp. 1313–1329, 2012.

N. Diakopoulos, D. Elgesem, A. Salway, A. Zhang, and K. Hofland, “Compare clouds: visualizing text corpora to compare media frames,” in Proceedings of IUI Workshop on Visual Text Analytics, 2015.

P. Trinius, T. Holz, J. Göbel and F. C. Freiling, “Visual analysis of malware behavior using tree maps and thread graphs,” 6th International Workshop on Visualization for Cyber Security, Atlantic City, NJ, pp. 33-38, 2009.

Nataraj, L., Karthikeyan, S., Jacob, G. and Manjunath, B, “Malware Images: Visualization and Automatic Classification,” Proceedings of the 8th International Symposium on Visualization for Cyber Security, Article No. 4, 2011.

Conti, G.; Bratus, S.; Shubina, A.; Lichtenberg, A.; Ragsdale, R.; PerezAlemany, R.; angster, B.; Supan, M.A,“Visual Study of Binary Fragment Types,” Black Hat: San Francisco, CA, USA, 2010.

K. Kancherla and S. Mukkamala, “Image visualization-based malware detection,” IEEE Symposium on Computational Intelligence in Cyber Security (CICS), Singapore, pp. 40-44, 2013.

D. Vasan, M. Alazab, S. Wassan, H. Naeem, B. Safaei, Q. Zheng, “IMCFN: Image-based malware classification using fine-tuned convolutional neural network architecture,”Computer Networks, vol. 171, 107138, 2020.

B.N. Narayanan, V.S.P Davuluru, “Ensemble Malware Classification System using Deep Neural Networks,”Electronics,vol. 9, no.5, 721, 2020.

R. Tian, L. M. Batten, S. C. Versteeg, “Function length as a tool for malware classification,” in: Malicious and Unwanted Software, MALWARE 2008. 3rd International Conference on, pp. 69-76,2008.

Z. M. Fadli, A. Jantan, “An approach for malware behavior identification and classification,” Computer Research and Development (ICCRD) 2011 3rd International Conference on, vol. 1, 2011.

M. Shankarapani, S. Ramamoorthy, R Movva, S. Mukkamala, “Malware detection using assembly and api call sequences,” Journal of Computing Virology, vol. 7, pp. 107-119, 2011.

D. Kong, G. Yan, “Discriminant malware distance learning on structural information for automated malware classification,” in: KDD ‘13: Proceedings of the 19th ACM SIGKDD international conference on Knowledge discovery and data mining, ACM, New York, NY, USA, pp. 1357-1365, 2013.

I. Santos, J. Devesa, F. Brezo, J. Nieves, P.G. Bringas, “OPEM: A StaticDynamic Approach for Machine-Learning-Based Malware Detection,” In: Herrero, Á., et al. International Joint Conference CISIS’12-ICEUTE´12-SOCO´12 Special Sessions. Advances in Intelligent Systems and Computing, vol 189. Springer, Berlin, Heidelberg, 2013.

K. Han, J. H. Lim, and E. G. Im, “Malware analysis method using visualization of binary files,” in Proceedings of the the2013 Research in Adaptive and Convergent Systems, pp. 317–321, Montreal, Quebec, Canada,2013.

J. Jacobs and B. Rudis, “Data-driven security analysis, visualization, and dashboards,” in Indianapolis, John Wiley & Sons, 2014.

N. Cao, L. Lu, Y.-R. Lin, F. Wang, and Z. Wen, “Social Helix: visual analysis of sentiment divergence in social media,” Journal of Visualization, vol.18, no.2, pp. 221–235, 2015.

Dübel, Steve &Röhlig, Martin & Schumann, H. & Trapp, Matthias, “2D and 3D presentation of spatial data: A systematic review,” 2014 IEEE VIS International Workshop on 3DVis (3DVis), Paris, France, 2014, pp. 11-18, doi: 10.1109/3DVis.2014.7160094.

T. Songqing, “Imbalanced Malware Images Classification: a CNN based Approach,” CoRR abs/1708.08042, 2017.

W. B. Balakrishnan, “Security Data Visualization,” SANS Institute Inc, 2014.

M. Arefkhani and M. Soryani, “Malware clustering using image processing hashes,” 9th Iranian Conference on Machine Vision and Image Processing (MVIP), Tehran, 2015, pp. 214-218, 2015.

Q. Wu, Z. Qin, J. Zhang, H. Yin, G. Yang, K. Hu, “Android Malware Detection Using Local Binary Pattern and Principal Component Analysis,” In: Zou B., Li M., Wang H., Song X., Xie W., Lu Z. (eds) Data Science. ICPCSEE 2017. Communications in Computer and Information Science, vol. 727, Springer, Singapore, 2017.

S. Rezaei, A. Afraz, F. Rezaei, M. R. Shamani, “Malware detection using opcodes statistical features,” in 2016 8th International Symposium on Telecommunications (IST), pp. 151–155, 2016.

V. Sitalakshmi and M. Alazab, “Use of Data Visualization for Zero-Day Malware Detection,”Security and Communication Networks, vol. 2018, pp. 1728303:1-1728303:13, 2018.

T. Y. Zhang, X. M. Wang Li, Z. Z. Li, F. Guo, Y. Ma, and W. Chen, “Survey of network anomaly visualization,” Science China Information Sciences, vol. 60, no. 12, 121101, 2017.

W. Shanks, “Enhancing Intrusion Analysis through Data Visualization,” SANS Institute, Inc, 2015.

L. Shiqi, T. Shengwei, S. Hua, and Y. Long, “Research on malicious code classification algorithm of stacked auto encoder,” Application Research of Computers, vol. 35, no. 1, pp. 261–265, 2018.

Y. Liu, Z. Wang, Y. Hou, and H. Yan, “Visualization and automatic classification of malicious code with enhanced information density,’’ J. Tsinghua Univ. (Natural Sci. Ed.), vol. 59, no. 1, pp. 914, 2019.

T. Wuchner, M. Ochoa, A. Pretschner, “Robust and effective malware detection through quantitative data flow graph metrics,” in: Detection of Intrusions and Malware, and Vulnerability Assessment, Springer, pp. 98-118, 2015.

R.W. Conners, C.A. Harlow, “A Theoretical Comparison of Texture Algorithms,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. PAMI-2, no. 3, pp. 204-222, 1980.

S.G. Mallat, “A Theory for Multiresolution Signal Decomposition: The Wavelet Representation,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 11, no. 7, pp. 674-693, 1989.

Lehto P, Romanoff J, Remes H, Sarikka T. “Characterisation of local grain size variation of welded structural steel,” Weld World, vol. 60, pp. 673 678, 2016, http://dx.doi.org/10.1007/s40194-016-0318-8

S. Srakaew, W. Piyanuntcharatsr, S. Adulkasem, “On the comparison of malware detection methods using data mining with two feature sets,” Journal of Security and Its Applications, vol. 9, no. 3, pp. 293-318, 2015.

D. Uppal, R. Sinha, V. Mehra, V. Jain, “Malware detection and classification based on extraction of api sequences,” in: ICACCI, IEEE, pp. 2337-2342, 2014.

R. Islam, R. Tian, L. M. Batten, S. Versteeg, “Classification of malware based on integrated static and dynamic features,” Journal of Network and Computer Applications, vol. 36, no.2, pp. 646-656, 2013.

S. Nari, A. A. Ghorbani, “Automated malware classification based on network behavior,” in: Computing, Networking and Communications (ICNC), 2013 International Conference on, IEEE, pp. 642-647, 2013.

I. Santos, F. Brezo, X. Ugarte-Pedrero, P. G. Bringas, “Opcode sequences as representation of executables for data-mining-based unknown malware detection,” Information Sciences, vol. 231, pp. 64-82, 2013.

I. Firdausi, C. Lim, A. Erwin, A. S. Nugroho, “Analysis of machine learning techniques used in behavior-based malware detection,” in: ACT ‘10, IEEE, pp. 201-203, 2010.

F. Ahmed, H. Hameed, M. Z. Shafiq, M. Farooq, “Using spatio-temporal information in api calls with machine learning algorithms for malware detection,” in: Proceedings of the 2nd ACM workshop on Security and artificial intelligence, ACM, pp. 55-62, 2009.

J. Z. Kolter, M. A. Maloof, “Learning to detect and classify malicious executables in the wild,” Journal of Machine Learning Research, pp. 2721- 2744, no. 7, pp. 2721-2744, 2006.

M. Ahmadi, G. Giacinto, D. Ulyanov, S. Semenov, M. Tromov, “Novel feature extraction, selection and fusion for effective malware family classification,” CoRR abs/1511.04317, 2016.

B. J. Kwon, J. Mondal, J. Jang, L. Bilge, T. Dumitras, “The dropper effect: Insights into malware distribution with downloader graph analytics,” in: Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications Security, ACM, pp. 1118-1129, 2015.

W. Mao, Z. Cai, D. Towsley, X. Guan, “Probabilistic inference on integrity for access behavior-based malware detection,” in: International Workshop on Recent Advances in Intrusion Detection, Springer, pp. 155-176, 2015.

P. M. Comar, L. Liu, S. Saha, P. N. Tan, A. Nucci, “Combining supervised and unsupervised learning for zero-day malware detection,” in: INFOCOM, 2013 Proceedings IEEE, pp. 2022-2030, 2013.

M. Siddiqui, M. C. Wang, J. Lee, “Detecting internet worms using data mining techniques,” Journal of Systemic, Cybernetics and Informatics, vol. 6, no. 6, pp. 48-53, 2009.

M. Graziano, D. Canali, L. Bilge, A. Lanzi, D. Balzarotti, “Needles in a haystack: Mining information from public dynamic analysis sandboxes for malware intelligence,” in: USENIX Security ‘15, pp. 1057-1072, 2015.

J. Sexton, C. Storlie, B. Anderson, “Subroutine based detection of APT malware,” Journal of Computer Virology and Hacking Techniques, vol. 12, pp. 225-233, 2016.

G. E. Dahl, J. W. Stokes, L. Deng, D. Yu, “Large-scale malware classification using random projections and neural networks,” in: Acoustics, Speech and Signal Processing (ICASSP), IEEE, pp. 3422-3426, 2013.

S. Palahan, D. Babi_c, S. Chaudhuri, D. Kifer, “Extraction of statistically significant malware behaviors,” in: Computer Security Applications Conference, ACM, pp. 69-78, 2013.

E. Raff, C. Nicholas, “An alternative to ncd for large sequences,” lempel-zivjaccard distance, in: Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, ACM, pp. 1007-1015, 2017.

A. Mohaisen, O. Alrawi, M. Mohaisen, “Amal: High-fidelity, “behavior based automated malware analysis and classification,” Computers & Security, vol. 52, pp. 251-266, 2015.

D. Kong, G. Yan, “Discriminant malware distance learning on structural information for automated malware classification,” in: ACM SIGKDD ‘13, nKDD ‘13, ACM, New York, NY, USA, pp. 1357-1365, 2013.

T. Lee, J. J. Mody, “Behavioral classification,” in: EICAR Conference, pp. 1-17, 2006.

K. Huang, Y. Ye, Q. Jiang, “Ismcs: an intelligent instruction sequence-based malware categorization system,” in: Anti-counterfeiting, Security, and Identification in Communication, 2009, IEEE, pp. 509-512, 2009.

Y. Ye, T. Li, Y. Chen, Q. Jiang, “Automatic malware categorization using cluster ensemble,” in: Proceedings of the 16th ACM SIGKDD international conference on Knowledge discovery and data mining, ACM, pp. 95- 104, 2010.

M. Eskandari, Z. Khorshidpour, S. Hashemi, “Hdm-analyser: a hybrid analysis approach based on data mining techniques for malware detection,” Journal of Computer Virology and Hacking Techniques, vol. 9, pp. 77-93, 2013.

Z. Chen, M. Roussopoulos, Z. Liang, Y. Zhang, Z. Chen, A. Delis, “Malware characteristics and threats on the internet ecosystem,” Journal of Systems and Software, vol. 85, pp. 1650-1672, 2012.

J. Yonts, “Attributes of malicious files,” Tech. rep., The SANS Institute, 2012.

J. Upchurch, X. Zhou, “Variant: a malware similarity testing framework,” in: 2015 10th International Conference on Malicious and Unwanted Software (MALWARE), IEEE, pp. 31-39,2015.

A. Tamersoy, K. Roundy, D. H. Chau, “Guilt by association: large scale malware detection by mining file-relation graphs,” in: Proceedings of the 20th ACM SIGKDD, ACM, pp. 1524-1533, 2014.

U. Bayer, P. M. Comparetti, C. Hlauschek, C. Kruegel, E. Kirda, Scalable, “behavior-based malware clustering,” in: NDSS, Vol. 9, pp. 8-11, 2009.

M. Polino, A. Scorti, F. Maggi, S. Zanero, “Jackdaw: Towards Automatic Reverse Engineering of Large Datasets of Binaries,” in: Detection of Intrusions and Malware, and Vulnerability Assessment, Lecture Notes in Computer Science, Springer International Publishing, pp. 121-143, 2015.

P. Vadrevu, B. Rahbarinia, R. Perdisci, K. Li, M. Antonakakis, “Measuring and detecting malware downloads in live network traffic,” in: Computer Security ESORICS 2013: 18th European Symposium on Research in Computer Security, Egham, UK, September 9-13, 2013. Proceedings, Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 556-573, 2013.

J. Jang, D. Brumley, S. Venkataraman, “Bitshred: feature hashing malware for scalable triage and semantic analysis,” in: Computer and communications security, ACM, pp. 309-320, 2011.

K. Rieck, P. Trinius, C. Willems, T. Holz, “Automatic analysis of malware behavior using machine learning,” Journal of Computer Security, vol. 19, no. 4, pp. 639-668, 2011.

S. Attaluri, S. McGhee, M. Stamp, “Profile hidden Markova models and metamorphic virus detection,” Journal in Computer Virology, vol. 5, pp. 151-169, 2009.

G. Liang, J. Pang, C. Dai, “A behavior-based malware variant classification technique,” International Journal of Information and Education Technology, vol. 6, no. 4., pp. 291-295, 2016.

Z. Feng, S. Xiong, D. Cao, X. Deng, X. Wang, Y. Yang, X. Zhou, Y. Huang, G. Wu, “Hrs.: A hybrid framework for malware detection,” in: Proceedings of the 2015 ACM International Workshop on Security and Privacy Analytics, ACM, pp. 19-26, 2015.

M. Ghiasi, A. Sami, Z. Salehi, “Dynamic VSA: a framework for malware detection based on register contents,” Engineering Applications of Artificial Intelligence, vol. 44, pp. 111- 122, 2015.

M. Lindorfer, C. Kolbitsch, P. M. Comparetti, “Detecting environment sensitive malware,” in: Recent Advances in Intrusion Detection, Springer, pp. 338-357, 2011.

C.T. Lin, N.J. Wang, H. Xiao, C. Eckert, “Feature selection and extraction for malware classification,” Journal of Information Science and Engineering, vol. 31, no. 3, pp. 965-992, 2015.

B. Anderson, D. Quist, J. Neil, C. Storlie, T. Lane, “Graph-based malware detection using dynamic analysis,” Journal in Computer Virology, vol. 7, no. 4, pp. 247-258, 2011.

I. Santos, J. Nieves, P. G. Bringas, “Ch. Semi-supervised Learning for Unknown Malware Detection,” International Symposium on Distributed Computing and Artificial Intelligence, Springer Berlin Heidelberg Berlin, Heidelberg, pp. 415-422, 2011.

D. H. Chau, C. Nachenberg, J. Wilhelm, A. Wright, C. Faloutsos, “Polonium: Tera-scale graph mining for malware detection,” in: ACM SIGKDD Conference on Knowledge Discovery and Data Mining, pp. 131- 142, 2010.

B. Anderson, C. Storlie, T. Lane, “Improving malware classification: bridging the static/dynamic gap,” in: Proceedings of the 5th ACM workshop on Security and artificial intelligence, ACM, pp. 3-14, 2012.

D. Baysa, R. Low, and M. “Stamp. Structural entropy and metamorphic malware,” Journal of Computer Virology and Hacking Techniques, vol. 9, no. 4, pp. 179–192, 2013.

R. Lyda and J. Hamrock, “Using entropy analysis to find encrypted and packed malware,” IEEE Security and Privacy, vol. 5, no. 2, pp. 40–45, 2007.

A. Moser, C. Kruegel, and E. Kirda “Limits of static analysis for malware detection,” In Computer Security Applications Conference, 2007. ACSAC 2007, Twenty-Third Annual, pp. 421–430, 2007.

D. Bilar. “Statistical structures: Finger printing malware for classification and analysis,” InBlackhat, 2006.

B. Biggio, I. Corona, D. Maiorca, B. Nelson, N. Šrndić, P. Laskov, G. Giacinto, and F. Roli. “Evasion attacks against machine learning at test time,” in H. Blockeel, K. Kersting, S. Nijssen, and F. Železný (editors), Machine Learning and Knowledge Discovery in Databases, vol. 8190 of Lecture Notes in Computer Science, pp. 387–402, Springer Berlin Heidelberg, 2013.

M. Christodorescu, S. Jha, S. Seshia, D. Song, and R. Bryant. “Semanticsaware malware detection,” In Security and Privacy, 2005 IEEE Symposium on, pp. 32–46, 2005.

S.Z.M. Shaid, M.A. Maarof, “Malware behaviour visualization,” Jurnal Teknologi, vol. 70, no. 5, 2014.

J. Hemalatha, S.A. Roseline, S. Geetha, S. Kadry, R. Damaševičius, “An Efficient DenseNet-Based Deep Learning Model for Malware Detection,” Entropy, vol. 23, no. 3, 344, 2021.

V. Moussas, A. Andreatos, “Malware Detection Based on Code Visualization and Two-Level Classification,” Information, vol. 12, no. 3, 118, 2021, https://doi.org/10.3390/info12030118

N. Marastoni, R. Giacobazzi, M. Dalla Reda, “Data augmentation and transfer learning to classify malware images in a deep learning context,” Journal of Computer Virology Hacking Techniques, vol. 17, no. 279-297, 2021.

M. Nisa, J.H. Shah, S. Kanwal, M. Raza, M.A. Khan, R. Damaševičius, T. Blažauskas, “Hybrid Malware Classification Method Using SegmentationBased Fractal Texture Analysis and Deep Convolution Neural Network Features,” Applied Sciences, vol. 10, no. 14, 4966, 2020.

A. Bensaoud, N. Abudawaood, J. Kalita, “Classifying Malware Images with Convolutional Neural Network Models,” ArXiv, abs/2010.16108, 2020.

D. Vasan, M. Alazab, S. Assan, H. Naeem, B. Safaei, Q. Zheng, “IMCFN: Image-based malware classification using fine-tuned convolutional neural network architecture,” Computer Networks, Vol. 171, 107138, 2020.

H. Guo, S. Huang, C. Huang, F. Shi, M. Zhang, Z. Pan, “Binary File’s Visualization and Entropy Features Analysis Combined with Multiple Deep Learning Networks for Malware Classification,” Security and Communication Networks, vol. 20, 8881760, 2020.

X. Gao, C. Hu, C. Shan, B. Liu, Z. Niu, H. Xie, “Malware classification for the cloud via semi-supervised transfer learning,” Journal of Information Security and Applications, vol. 55, 102661, 2020.

S. A. Roseline, S. Geetha, S. Kadry and Y. Nam, “Intelligent VisionBased Malware Detection and Classification Using Deep Random Forest Paradigm,” in IEEE Access, vol. 8, pp. 206303-206324, 2020.

D. Vasan, M. Alazab, S. Wassan, B. Safaei, Q. Zheng, “Image-Based malware classification using ensemble of CNN architectures (IMCEC),” Computers & Security, Vol. 92, 101748, 2020.

Y. Zhao, W. Cui, S. Geng, B. Bo, Y. Feng and W. Zhang, “A Malware Detection Method of Code Texture Visualization Based on an Improved Faster RCNN Combining Transfer Learning,” IEEE Access, vol. 8, pp. 166630-166641, 2020.

N. Bhodia, P. Prajapati, F. Di Troia, M. Stamp, “Transfer Learning for ImageBased Malware Classification,” doi: 10.5220/0007701407190726, 2019.

D. -L. Vu, T. -K. Nguyen, T. V. Nguyen, T. N. Nguyen, F. Massacci and P. H. Phung, “A Convolutional Transformation Network for Malware Classification,” 2019 6th NAFOSTED Conference on Information and Computer Science (NICS), Hanoi, Vietnam, 2019, pp. 234-239.

K.-S. Sung, W. Na, “A study on the implementation of a system providing reliable malware information service,” International Journal of Electrical Engineering & Education, vol. 58, no. 2, pp. 517-530, 2021.

Downloads

Published

2024-06-01
Metrics
Views/Downloads
  • Abstract
    186
  • PDF
    21

How to Cite

Deore, M., Tarambale, M., Raja Kumar, J. R., and Sakhare, S. (2024). GRASE: Granulometry Analysis With Semi Eager Classifier to Detect Malware. International Journal of Interactive Multimedia and Artificial Intelligence, 8(6), 120–134. https://doi.org/10.9781/ijimai.2023.12.002