IoT Detection System for Mildew Disease in Roses Using Neural Networks and Image Analysis.
DOI:
https://doi.org/10.9781/ijimai.2023.07.001Abstract
Artificial intelligence presents different approaches, one of these is the use of neural network algorithms, a particular context is the farming sector and these algorithms support the detection of diseases in flowers, this work presents a system to detect downy mildew disease in roses through the analysis of images through neural networks and the correlation of environmental variables through an experiment in a controlled environment, for which an IoT platform was developed that integrated an artificial intelligence module. For the verification of the model, three different models of neural networks in a controlled greenhouse were experimentally compared and a proposed model was obtained for the training and validation sets of two categories of healthy roses and diseased roses with 89% training and 11% recovery. validation and it was determined that the relative humidity variable can influence the development and appearance of Downy Mildew disease when its value is above 85% for a prolonged period.
Downloads
References
Y. Li, C. Xia, and J. Lee, “Vision-based pest detection and automatic spray of greenhouse plant,” in IEEE International Symposium on Industrial Electronics, 2009, pp. 920–925. doi: 10.1109/ISIE.2009.5218251.
A. Calderón and H. Hurtado, “Vista de Machine learning en la detección de enfermedades en plantas,” Tecnología, investigación y academia TIA, vol. 7, no. 2, pp. 55–62, Dec. 2019, Accessed: May 30, 2023. [Online]. Available: https://revistas.udistrital.edu.co/index.php/tia/article/view/15685/15932
F. Reyes, L. Cruz, N. Cáceres, and E. Valero, “Desempeño del sector floricultor,” Bogotá D.C., 2017. Accessed: May 30, 2023. [Online]. Available: https://sioc.minagricultura.gov.co/Flores/Normatividad/2016-06-01%20Boletin%20desempeño%20sector%20floricultor.pdf
S. Johnny, “Ventaja comparativa del sector floricultor colombiano que promueva su presencia y le permita fortalecerse en el marco del TLC con corea del sur,” Bogotá D.C., 2018. Accessed: May 30, 2023. [Online]. Available: https://repositorio.uniagustiniana.edu.co/handle/123456789/370
P. Israel et al., “Current Status of Peronospora sparsa, Causal Agent of Downy Mildew on Rose (Rosa sp.) Estado Actual de Peronospora sparsa, Causante del Mildiu Velloso en Rosa (Rosa sp.),” Rev. mex. fitopatol, vol. 31, no. 2, pp. 113–115, 2013, Accessed: May 30, 2023. [Online]. Available: http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S0185-33092013000200004&lng=es
M. Ayala, I. A.; Luz, E. Argel-Roldan, S. Jaramillo-Villegas, M. MarínMontoya, and M. M. Montoya, “Diversidad genética de peronospora sparsa (peronosporaceae) en cultivos de rosa de Colombia,” Acta biológica Colombiana, vol. 13, no. 1, pp. 79–94, 2008, Accessed: May 30, 2023. [Online]. Available: http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0120-548X2008000100005&lng=en
A. Flórez, O. Hurtado, and S. Ramos, “Procesamiento de imágenes para reconocimiento de daños causados por plagas en el cultivo de Begonia semperflorens (flor de azúcar),” Acta Agronomica, vol. 64, no. 3, pp. 273–278, 2014, doi: 10.15446/acag.v64n3.42657.
C. Cáceres, D. Amaya, and O. Ramos, “Methodology for pest damage recognition in Begonia semperflorens link & Otto (sugar flower) crop through image processing,” Acta Agronomica, vol. 64, no. 3, pp. 257–264, 2015, doi: 10.15446/acag.v64n3.42657.
F. Qin, D. Liu, B. Sun, L. Ruan, Z. Ma, and H. Wang, “Identification of Alfalfa Leaf Diseases Using Image Recognition Technology,” PLoS One, vol. 11, no. 12, p. e0168274, Dec. 2016, doi: 10.1371/journal.pone.0168274.
S. A. Patil, D. S. Khot, O. D. Otari, and U. G. Malavkar, “Automated Disease Detection and Classification of Plants Using Image Processing Approaches: A Review,” Proceedings of Second International Conference on Computing, Communications, and Cyber-Security, vol. 203, pp. 641–651, 2021, doi: https://doi.org/10.1007/978-981-16-0733-2_45
S. Reddy Bandi, “Performance evaluation of various statistical classifiers in detecting the diseased citrus leaves,” International Journal of Engineering Science and Technology (IJEST), vol. 5, no. 2, pp. 98–307, 2013, Accessed: Feb. 28, 2022. [Online]. Available: https://www.idc-online.com/technical_references/pdfs/information_technology/PERFORMANCE.pdf
U. Ansari, S. Shantaiya, and M. Ansari, “Identification Of Food Grains And Its Quality Using Pattern Classification,” International Journal of Computer and Communication Technology, vol. 3, no. 1, 2012, doi: 10.47893/IJCCT.2012.1107.
N. Razmjooy, B. S. Mousavi, and F. Soleymani, “A real-time mathematical computer method for potato inspection using machine vision,” Computers & Mathematics with Applications, vol. 63, no. 1, pp. 268–279, Jan. 2012, doi: 10.1016/J.CAMWA.2011.11.019.
S. Prasad, P. Kumar, R. Hazra, and A. Kumar, “Plant leaf disease detection using Gabor wavelet transform,” Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 7677 LNCS, pp. 372–379, 2012, doi: 10.1007/978-3-642-35380-2_44.
D. Cui, Q. Zhang, M. Li, G. L. Hartman, and Y. Zhao, “Image processing methods for quantitatively detecting soybean rust from multispectral images,” Biosystems Engineering, vol. 107, no. 3, pp. 186–193, Nov. 2010, doi: 10.1016/J.BIOSYSTEMSENG.2010.06.004.
T. B. and S. V Rathod A N., “Image Processing Techniques for Detection of Leaf Disease,” International Journal of Advanced Research in Computer Science and Software Engineering, vol. 3, no. 11, pp. 397–399, 2013.
S. D. Bauer, F. Korč, and W. Förstner, “The potential of automatic methods of classification to identify leaf diseases from multispectral images,” Precision Agriculture, vol. 12, no. 3, pp. 361–377, Jun. 2011, doi: 10.1007/S11119-011-9217-6/FIGURES/5.
A. Pacheco, H. Bolivar-Baron, R. Gonzalez-Crespo, and J. Pascual-Espada, “Reconstruction of High Resolution 3D Objects from Incomplete Images and 3D Information,” International Journal of Interactive Multimedia and Artificial Intelligence, vol. 2, no. 6, p. 7, 2014, doi: 10.9781/IJIMAI.2014.261.
S. R. Dubey, P. Dixit, N. Singh, and J. P. Gupta, “Infected Fruit Part Detection using K-Means Clustering Segmentation Technique,” International Journal of Interactive Multimedia and Artificial Intelligence, vol. 2, no. 2, p. 65, 2013, doi: 10.9781/IJIMAI.2013.229.
A. Devaraj, K. Rathan, S. Jaahnavi, and K. Indira, “Identification of plant disease using image processing technique,” Proceedings of the 2019 IEEE International Conference on Communication and Signal Processing, ICCSP 2019, pp. 749–753, 2019, doi: 10.1109/ICCSP.2019.8698056.
J. G. A. Barbedo, “A review on the main challenges in automatic plant disease identification based on visible range images,” Biosystems Engineering, vol. 144, pp. 52–60, 2016, doi: 10.1016/j.biosystemseng.2016.01.017.
M. Khari, A. K. Garg, R. Gonzalez-Crespo, and E. Verdú, “Gesture Recognition of RGB and RGB-D Static Images Using Convolutional Neural Networks,” International Journal of Interactive Multimedia and Artificial Intelligence, vol. 5, no. 7, p. 22, 2019, doi: 10.9781/IJIMAI.2019.09.002.
Y. H. Robinson, S. Vimal, M. Khari, F. C. L. Hernández, and R. G. Crespo, “Tree-based convolutional neural networks for object classification in segmented satellite images,” International Journal of High Performance Computing Applications, Jul. 2020, doi: 10.1177/1094342020945026.
V. S. Bhong and P. B. V Pawar, “Study and Analysis of Cotton Leaf Disease Detection Using Image Processing,” International Journal of Advanced Research in Engineering and Technology, vol. 3, no. 2, pp. 1447–1454, 2016, doi: 10.1088/1742-6596/2062/1/012009.
R. Gupta, M. Khari, D. Gupta, and R. G. Crespo, “Fingerprint image enhancement and reconstruction using the orientation and phase reconstruction,” Information Sciences (N Y), vol. 530, pp. 201–218, Aug. 2020, doi: 10.1016/J.INS.2020.01.031.
J. M. T. Ruiz, Jesús Gil and R. G. Crespo, “The Application of Artificial Intelligence in Project Management Research: A Review,” International Journal of Interactive Multimedia and Artificial Intelligence, vol. 6, no. 6, pp. 54–66, 2021, doi: https://doi.org/10.9781/ijimai.2020.12.003
K. Indumathi, R. Hemalatha, S. A. Nandhini, and S. Radha, “Intelligent plant disease detection system using wireless multimedia sensor networks,” Proceedings of the 2017 International Conference on Wireless Communications, Signal Processing and Networking, WiSPNET 2017, vol. 2018-Janua, pp. 1607–1611, 2018, doi: 10.1109/WiSPNET.2017.8300032.
G. Tigistu and Y. Assabie, “Automatic identification of flower diseases using artificial neural networks,” IEEE AFRICON Conference, vol. 2015-Novem, 2015, doi: 10.1109/AFRCON.2015.7332020.
V. Singh, Varsha, and A. K. Misra, “Detection of unhealthy region of plant leaves using image processing and genetic algorithm,” Conference Proceeding - 2015 International Conference on Advances in Computer Engineering and Applications, ICACEA 2015, pp. 1028–1032, 2015, doi: 10.1109/ICACEA.2015.7164858.
S. D. Khirade and A. B. Patil, “Plant disease detection using image processing,” Proceedings - 1st International Conference on Computing, Communication, Control and Automation, ICCUBEA 2015, vol. 7677, pp. 768–771, 2012, doi: 10.1109/ICCUBEA.2015.153.
J. N. Reddy, K. Vinod, and A. S. R. Ajai, “Analysis of Classification Algorithms for Plant Leaf Disease Detection,” Proceedings of 2019 3rd IEEE International Conference on Electrical, Computer and Communication Technologies, ICECCT 2019, pp. 1–6, 2019, doi: 10.1109/ICECCT.2019.8869090.
R. Meena Prakash, G. P. Saraswathy, G. Ramalakshmi, K. H. Mangaleswari, and T. Kaviya, “Detection of leaf diseases and classification using digital image processing,” Proceedings of 2017 International Conference on Innovations in Information, Embedded and Communication Systems, ICIIECS 2017, vol. 2018-Janua, pp. 1–4, 2018, doi: 10.1109/ICIIECS.2017.8275915.
F. Jobin, S. D. Anto, and B. K. Anoop, “Identification of leaf diseases in pepper plants using soft computing techniques,” Conference on emerging devices and smart systems (ICEDSS), pp. 168–173, 2016, doi: 10.1109/ICEDSS.2016.7587787.
P. Revathi and M. Hemalatha, “Identification of cotton diseases based on cross information gain_deep forward neural network classifier with PSO feature selection,” International Journal of Engineering and Technology, vol. 5, no. 6, pp. 4637–4642, 2013.
N. Velázquez-López, Y. Sasaki, K. Nakano, J. M. Mejía-Muñoz, and E. R. Kriuchkova, “Detección de cenicilla en rosa usando procesamiento de imágenes por computadora,” Revista Chapingo Serie Horticultura, vol. 17, no. 2, pp. 151–160, 2011, Accessed: May 30, 2023. [Online]. Available: http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S1027-152X2011000200008&lng=es&tlng=es
A. Fuentes, S. Yoon, S. C. Kim, and D. S. Park, “A robust deep-learningbased detector for real-time tomato plant diseases and pests recognition,” Sensors (Switzerland), vol. 17, no. 9, 2017, doi: 10.3390/s17092022.
S. Baskaran, “Advances in Image Processing for Detection of Plant Disease,” The SIJ Transactions on Computer Science Engineering & its Applications (CSEA), vol. 05, no. 02, pp. 08–10, 2017, doi: 10.9756/sijcsea/v5i2/05010140101.
P. Rajan, B. Radhakrishnan, and L. Padma Suresh, “Detection and classification of pests from crop images using Support Vector Machine,” Proceedings of IEEE International Conference on Emerging Technological Trends in Computing, Communications and Electrical Engineering, ICETT 2016, 2017, doi: 10.1109/ICETT.2016.7873750.
P. Boissard, V. Martin, and S. Moisan, “A cognitive vision approach to early pest detection in greenhouse crops,” Computers and Electronics in Agriculture, vol. 62, no. 2, pp. 81–93, 2008, doi: 10.1016/j.compag.2007.11.009.
D. E. Kusumandari, M. Adzkia, S. P. Gultom, M. Turnip, and A. Turnip, “Detection of Strawberry Plant Disease Based on Leaf Spot Using Color Segmentation,” Journal of Physics: Conference Series, vol. 1230, no. 1, 2019, doi: 10.1088/1742-6596/1230/1/012092.
R. G. De Luna, E. P. Dadios, and A. A. Bandala, “Automated Image Capturing System for Deep Learning-based Tomato Plant Leaf Disease Detection and Recognition,” IEEE Region 10 Annual International Conference, Proceedings/TENCON, vol. 2018-Octob, no. October, pp. 1414–1419, 2019, doi: 10.1109/TENCON.2018.8650088.
L. Shanmugam, A. L. A. Adline, N. Aishwarya, and G. Krithika, “Disease detection in crops using remote sensing images,” Proceedings - 2017 IEEE Technological Innovations in ICT for Agriculture and Rural Development, TIAR 2017, vol. 2018-Janua, no. Tiar, pp. 112–115, 2018, doi: 10.1109/TIAR.2017.8273696.
C. Sullca, C. Molina, C. Rodríguez, and T. Fernández, “Detección de enfermedades y plagas en las hojas de arándanos utilizando técnicas de visión artificial,” Perspectivas, vol. 15, no. 15, pp. 32–39, 2018.
A. Navlani, “Naive Bayes Classification using Scikit-learn,” Datacamp, 2020. https://www.datacamp.com/tutorial/naive-bayes-scikit-learn (accessed May 30, 2023).
Downloads
Published
-
Abstract154
-
PDF17