A Platform for Swimming Pool Detection and Legal Verification Using a Multi-Agent System and Remote Image Sensing.

Authors

DOI:

https://doi.org/10.9781/ijimai.2023.01.002

Keywords:

Deep Learning, Geographic information system, Pool Aerial Recognition
Supporting Agencies
Héctor Sánchez San Blas's research is supported by the Spanish Ministry of Universities (FPU Fellowship under Grant FPU20/03014). The research of Luis Augusto Silva has been funded by the call for predoctoral contracts USAL 2021, co-financed by Banco Santander.

Abstract

Spain is the second country in Europe with the most swimming pools. However, the legal literature estimates that 20% of swimming pools are not declared or irregular.The administration has a corps of people who manually analyze satellite or drone images to detect illegal or irregular structures. This method is costly in terms of effort and time, and it is also a method based on the subjectivity of the person carrying it out. This proposal aims to design a platform that allows the automatic detection of irregular pools. Using geographic information tools (GIS) based on orthophotography, combined with advanced machine learning techniques for object detection, allows this work. Furthermore, using a multi-agent architecture allows the system to be modular, with the possibility of the different parts of the system working together, balancing the workload. The proposed system has been validated by testing it in different towns in Spain. The system has shown promisin results in performing this task, with an F1-Score of 97.1%.

Downloads

Download data is not yet available.

References

D. Tien, T. Rudra, A. B. Hope, “Swimming pool identification from digital sensor imagery using SVM,” Proceedings - Digital Image Computing Techniques and Applications: 9th Biennial Conference of the Australian Pattern Recognition Society, DICTA 2007, pp. 523–527, 2007, doi: 10.1109/DICTA.2007.4426841.

W. Passos, E. Silva, S. Netto, J. Martins, Y. Costa, G. Araujo, A. Lima, “Detecção de Potenciais Focos do Aedes aegypti em Vídeos Aéreos Usando Redes Neurais,” pp. 22–25, 2020, doi: 10.14209/sbrt.2020.1570661555.

P. C. Gray, K. C. Bierlich, S. A. Mantell, A. S. Friedlaender, J. A. Goldbogen, D. W. Johnston, “Drones and convolutional neural networks facilitate automated and accurate cetacean species identification and photogrammetry,” Methods in Ecology and Evolution, vol. 10, no. 9, pp. 1490–1500, 2019, doi: 10.1111/2041-210X.13246.

M. I. Habibie, T. Ahamed, R. Noguchi, S. Matsushita, “Deep Learning Algorithms to determine Drought prone Areas Using Remote Sensing and GIS,” pp. 69–73, 2020, doi: 10.1109/AGERS51788.2020.9452752.

I. Goodfellow, Y. Bengio, A. Courville, Deep Learning. MIT Press, 2016. http://www.deeplearningbook.org

R. Girshick, J. Donahue, T. Darrell, J. Malik, “Rich feature hierarchies for accurate object detection and semantic segmentation,” Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 1, pp. 580–587, 2014, doi: 10.1109/CVPR.2014.81.

R. Girshick, “Fast R-CNN,” Proceedings of the IEEE International Conference on Computer Vision, vol. 2015 Inter, pp. 1440–1448, 2015, doi: 10.1109/ICCV.2015.169.

H. Rampersad, “Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks,” Total Performance Scorecard, pp. 159–183, 2020, doi: 10.4324/9780080519340-12.

K. He, G. Gkioxari, P. Dollár, R. Girshick, “Mask r-cnn,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 42, no. 2, pp. 386–397, 2020, doi: 10.1109/TPAMI.2018.2844175.

R. Girshick, I. Radosavovic, G. Gkioxari, P. Dollár, K. He, “Detectron.” https://github.com/facebookresearch/detectron, 2018.

Y. Wu, A. Kirillov, F. Massa, W.-Y. Lo, R. Girshick, “Detectron2.” https://github.com/facebookresearch/detectron2, 2019.

W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C. Y. Fu, A. C. Berg, “SSD: Single Shot MultiBox Detector,” 12 2015, doi: 10.1007/978-3-319-46448-0_2.

J. Redmon, S. Divvala, R. Girshick, A. Farhadi, “You only look once: Unified, real-time object detection,” Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 2016-Decem, pp. 779–788, 2016, doi: 10.1109/CVPR.2016.91.

J. Redmon, A. Farhadi, “YOLO9000: Better, faster, stronger,” Proceedings - 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, vol. 2017-Janua, pp. 6517–6525, 2017, doi: 10.1109/CVPR.2017.690.

J. Redmon, A. Farhadi, “Yolov3: An incremental improvement,” CoRR, vol. abs/1804.02767, 2018, doi: http://arxiv.org/abs/1804.02767

A. Bochkovskiy, C. Wang, H. M. Liao, “Yolov4: Optimal speed and accuracy of object detection,” CoRR, vol. abs/2004.10934, 2020, doi: https://arxiv.org/abs/2004.10934.

S.-H. Chen, C.-W. Wang, I.-H. Tai, K.-P. Weng, Y.-Chen, K.-S. Hsieh, “Modified yolov4-densenet algorithm for detection of ventricular septal defects in ultrasound images,” International Journal of Interactive Multimedia and Artificial Intelligence, vol. 6, no. 7, pp. 101-108, doi: 10.9781/ijimai.2021.06.001.

L. A. Silva, H. S. S. Blas, D. P. García, A. S. Mendes, G. V. González, “An architectural multi-agent system for a pavement monitoring system with pothole recognition in uav images,” Sensors, vol. 20, no. 21, pp. 1–23, 2020, doi: 10.3390/s20216205.

C. Galindo, P. Moreno, J. Gonzalez, V. Arévalo, “Swimming pools localization in colour high-resolution satellite images,” vol. 4, pp. IV–510–IV–513, 2009, doi: 10.1109/IGARSS.2009.5417425.

M. Kim, J. B. Holt, R. J. Eisen, K. Padgett, W. K. Reisen, J. B. Croft, “Detection of swimming pools by geographic object-based image analysis to support west nile virus control efforts,” Photogrammetric Engineering and Remote Sensing, vol. 77, no. 11, pp. 103– 113, 2011, doi: 10.14358/pers.77.11.1169.

B. Rodríguez-Cuenca, M. C. Alonso, “Semi-automatic detection of swimming pools from aerial high- resolution images and LIDAR data,” Remote Sensing, vol. 6, no. 4, pp. 2628–2646, 2014, doi: 10.3390/rs6042628.

C. Ferner, G. Eibl, A. Unterweger, S. Burkhart, S. Wegenkittl, “Pool detection from smart metering data with convolutional neural networks,” Energy Informatics, vol. 2, pp. 1–9, 2019, doi: 10.1186/s42162-019-0097-8.

Z. Domozi, A. Molnar, “Surveying private pools in suburban areas with neural network based on drone photos,” EUROCON 2019 - 18th International Conference on Smart Technologies, pp. 1–6, 2019, doi: 10.1109/EUROCON.2019.8861770.

B. Lima, L. Ferreira, J. M. Moura, “Helping to detect legal swimming pools with deep learning and data visualization,” Procedia Computer Science, vol. 181, no. 2019, pp. 1058–1065, 2021, doi: 10.1016/j.procs.2021.01.301.

C. Zato, G. Villarrubia, A. Sanchez, I. Barri, E. Rubión, A. Fernández, C. Sánchez, J. Cabo, T. Álamos, J. Sanz, J. Seco, J. Bajo, J. Corchado Rodríguez, “Pangea - platform for automatic construction of organizations of intelligent agents,” vol. 151, 01 2012, doi: 10.1007/978-3-642-28765-7_27.

J. Schwartz, et al., “Bing maps tile system,” 2009. http://msdn.microsoft.com/en-us/library/bb259689.aspx, (accessed in: 13/09/2021).

“Google maps.” https://maps.google.com, (accessed in: 13/09/2021).

Downloads

Published

2023-12-01
Metrics
Views/Downloads
  • Abstract
    159
  • PDF
    20

How to Cite

Sánchez San Blas, H., Carmona Balea, A., Sales Mendes, A., Augusto Silva, L., and Villarrubia González, G. (2023). A Platform for Swimming Pool Detection and Legal Verification Using a Multi-Agent System and Remote Image Sensing. International Journal of Interactive Multimedia and Artificial Intelligence, 8(4), 153–165. https://doi.org/10.9781/ijimai.2023.01.002