Predictive Model for Taking Decision to Prevent University Dropout.

Authors

  • Argelia Berenice Urbina Nájera Universidad Popular Autónoma del Estado de Puebla image/svg+xml
  • Luis Andrés Méndez Ortega Universidad Popular Autónoma del Estado de Puebla image/svg+xml

DOI:

https://doi.org/10.9781/ijimai.2022.01.006

Keywords:

Artificial Neural Networks, Decision Trees, Dropout, Educational Data Mining, Higher Education

Abstract

Dropout is an educational phenomenon studied for decades due to the diversity of its causes, whose effects fall on society's development. This document presents an experimental study to obtain a predictive model that allows anticipating a university dropout. The study uses 51,497 instances with 26 attributes obtained from social sciences, administrative sciences, and engineering collected from 2010 to 2019. Artificial neural networks and decision trees were implemented as classification algorithms, and also, algorithms of attribute selection and resampling methods were used to balance the main class. The results show that the best performing model was that of Random Forest with a Matthew correlation coefficient of 87.43% against 53.39% obtained by artificial neural networks and 94.34% accuracy by Random Forest. The model has allowed predicting an approximate number of possible dropouts per period, contributing to the involved instances in preventing or reducing dropout in higher education.

Downloads

Download data is not yet available.

References

V. Tinto. “Definir la deserción: una cuestión de perspectiva”. Revista de Educación Superior, vol. 71, no. 18, pp. 1-9, 1989. Available: https://bit.ly/3mptENw

Organization for Economic Cooperation and Development. “Panorama de la Educación, indicadores de la OECD 2019”, Ministerio de Educación y Formación Profesional, 2019. Available: https://bit.ly/3afjDjq

C. Alonso, E. Blanco, T. Fernández, and P. Solís. “Caminos desiguales: trayectorias educativas y laborales de los jóvenes en la ciudad de México”. INEE-El Colegio de México. Primera edición, 2014. Available: https://bit.ly/3oVxVtt.

Organization for Economic Cooperation and Development. “Higher Education in Mexico: Labour Market Relevance and Outcomes”, OECD Publishing, Paris, 2019, https://doi.org/10.1787/9789264309432-en

L. López Villafaña, and A. Beltrán Solache. “La deserción en estudiantes de educación superior: tres percepciones en estudio, alumnos, docentes y padres de familia”. Pistas Educativas, no. 126, 2017. Available: https://bit.ly/37qBvWJ

E. Ramírez, D. Espinosa, and E. Millán. “Estrategia para afrontar la deserción universitaria desde las tecnologías de la información y las comunicaciones”. Revista Científica, vol. 24, pp. 52-62, 2016, doi: 10.14483/udistrital.jour.RC.2016.24.a5.

J. R. Casanova, A. Cervero, J. C. Núñez, L. S. Almeida, and A. Bernardo, “Factors that determine the persistence and dropout of university students”, Psicothema, vol. 30, no. 4, 2018, pp. 408-414, doi: 10.7334/ psicothema2018.155.

Secretaría de Seguridad Pública. “Deserción escolar y conductas de riesgo en adolescentes”. Subsecretaría de prevención y participación ciudadana, Dirección general de prevención del delito y participación ciudadana. gobierno federal SSP. Dirección General de Prevención del Delito y Participación Ciudadana. Gobierno Federal SSP, 2011. Available: https://bit.ly/34kOwz1

Secretaría de Educación Pública. “Principales cifras del sistema educativo nacional 2015-2016, cifras preliminares”. Biblioteca de publicaciones oficiales del gobierno de México, 2016. Available: https://bit.ly/3gS8juK

I. W. Li, D. R. Carroll, “Factors influencing university student satisfaction, dropout, and academic performance: an Australian higher education equity perspective,” National Centre for Student Equity in Higher Education, pp. 3-59, 2017. https://doi.o10.1080/1360080x.2019.1649993

P. Perchinunno, M. Bilancia, D. Vitale, “A Statistical Analysis of Factors Affecting Higher Education Dropouts”, Social Indicators Research, 2019, https://doi.org/10.1007/s11205-019-02249-y

E. Chinkes, “Pronósticos y data mining para la toma de decisiones, pronóstico sobre la deserción de alumnos de una facultad”. Cuadernos del CIMBAGE, no. 20, pp. 107-132, 2017. Available: https://bit.ly/2MEyGK0

M. Solis, T. Moreira, R. Gonzalez, T. Fernandez and M. Hernandez, “Perspectives to Predict Dropout in University Students with Machine Learning,” 2018 IEEE International Work Conference on Bioinspired Intelligence (IWOBI), San Carlos, Costa Rica, 2018, pp. 1-6, doi: 10.1109/IWOBI.2018.8464191.

N. Mduma, K. Kalegele, D. Machuve, “Machine learning approach for reducing students dropout rates. International journal of advanced computer research (IJACR),” Vol 9. No. 42, 2019. https://doi.org/10.19101/ijacr.2018.839045

M. Alban, D. Mauricio, “Neural networks to predict dropout at the universities. International journal of machine learning and computing,” Vol. 9. No 2. Pp. 149-153, 2019, doi: 10.18178/ijmlc.2019.9.2.779.

N. Lázaro, Z. Callejas, D. Griol, “Predicting computer engineering students’ dropout in Cuban higher education with pre-enrolment and early performance data,” Journal of technology and science education. vol. 10 no. 2, 2020, doi:10.3926/jotse.922.

L. Auluck, N. Velagapudi, J. Blumenstock, J. West, “Predicting Student Dropout in Higher Education,” 2016 ICML Workshop on #Data4Good: Machine Learning in Social Good Applications, New York, NY, USA, 2017, pp. 16-20.

C. Lacave, A. Molina, J. Cruz-Lemus, “Learning Analytics to identify dropout factors of Computer Science studies through Bayesian networks”, Behaviour & Information Technology, vol. 37, 2018, https://doi.org/10.1080/0144929X.2018.1485053

P. Ramírez, and E. Grandón, “Predicción de la deserción académica en una universidad pública chilena a través de la clasificación basada en árboles de decisión con parámetros optimizados,” Formación Universitaria, vol. 11, no. 3, pp. 3-10, 2018.

A. B. Urbina-Nájera, J. C. Camino-Hampshire, R. Cruz-Barbosa, “Deserción escolar universitaria: Patrones para prevenirla usando minería de datos educativa,” RELIEVE, vol. 26, no. 1, 2020, http://doi.org/10.7203/relieve.26.1.16061

D. Sun, Y. Mao, J. Du, P. Xu, Q. Zheng, H. Sun, “Deep learning for dropout prediction in MOOCs,” 2019 Eighth International Conference on Educational Innovation through Technology (EITT). Biloxi, MS. USA, 2019, doi: 10.1109/EITT.2019.00025.

J. M. Moine, “Metodologías para el descubrimiento de conocimiento en bases de datos: un estudio comparativo,” Universidad Nacional de la Plata. Facultad de Informática. Tesis presentada en la Facultad de Informática de la Universidad Nacional de la Plata. 2013. Available: https://bit.ly/3wbmfH0

C. Carvajal, J. González, S. Sarzoza, “Variables sociodemográficas y académicas explicativas de la deserción de estudiantes en la facultad de ciencias naturales de la universidad de playa ancha (chile),” Formación Universitaria, vol. 11, no. 2, 2017, pp. 3-12. https://doi.org/10.4067/s0718-50062018000200003

V. Cendejas, L. Acuña, M. Cortez, J. Bolaños, “El uso de modelo y metodologías de minería de datos para la inteligencia de negocios,” Revista de sistemas computacionales y TIC’S. vol.3, no. 8, 2017, pp. 54-63. Available: https://bit.ly/2ThbtQV

M. Zavala, M. Álvarez, M. Vázquez, M., I. González and A. Bazán, “Factores internos, externos y bilaterales asociados con la deserción en estudiantes universitarios,” Interacciones Revista de Avances en Psicología, vol. 4. no.1, 2018, pp. 59-69. https://doi.org/10.24016/2018.v4n1.103

S. Muñoz-Camacho, T. Gallardo, M. Muñoz-Bravo, C. Muñoz-Bravo, “Probabilidad de deserción estudiantil en cursos de matemáticas básicas en programas profesionales de la Universidad de los Andes Venezuela,” Formación Universitaria, vol. 11, no. 4, 2018, pp. 33-42. https://doi.org/10.4067/s0718-50062018000400033

J. Gallegos, N. Campos, K. Canales, K., E. González, “Factores determinantes en la deserción universitaria. caso facultad de ciencias económicas y administrativas de la universidad católica de la santísima concepción,” Formación Universitaria, vol. 11, no. 3, 2018, pp. 11-18. https://doi.org/10.4067/s0718-50062018000300011

R. Ruiz., J. Aguilar, and J. Riquelme, “Evaluación de Rankings de Atributos para Clasificación,” Departamento de Lenguajes y Sistemas Informáticos. Universidad de Sevilla, Sevilla, España, 2002. Available: https://bit.ly/38bscde

C. L. Villagrá-Arnedo, F. J. Gallego-Durán, F. Llorens-Largo, R. SatorreCuerda, P. Compañ-Rosique, and R. Molina-Carmona, “Time-Dependent Performance Prediction System for Early Insight in Learning Trends,” International Journal of Interactive Multimedia and Artificial Intelligence. vol. 6, no. 2, 2020. Doi: 10.9781/ijimai.2020.05.006.

I. Witten, E. Frank, M. Hall, and C. Pal, “Data mining: Practical machine learning tools and techniques,” Morgan Kaufmann Publishers, Burlington.

C. Romero, and S. Ventura, “Educational data mining: A survey from 1995 to 2005,” Expert Systems with Applications, vol. 33, no. 1, pp. 135-146, 2007. https://doi.org/10.1016/j.eswa.2006.04.005

C. Menes, G. Arcos, P. Moreno, and C. Gallegos C. “Desempeño de algoritmos de minería en indicadores académicos: Árbol de decisión y Regresión Logística,” Revista Cubana de Ciencias Informáticas, vol. 9, no. 4, 2015.

T. Mitchell, “Decision Tree Learning,” Washington State University, 2000. Available: https://bit.ly/2N1AI32

N. Sánchez, “Máquinas de soporte vectorial y redes neuronales artificiales en la predicción del movimiento USD/COP spot intradiario,” Universidad Externado de Colombia, vol. 9, pp. 113-172, 2016, doi: http://dx.doi.org/10.18601/17941113.n9.04

D. Chicco, and G. Jurman, “The advantages of the Matthews correlation coefficient (MCC) over F1 score and accuracy in binary classification evaluation,” BMC Genomics, vol. 21, no. 6, pp. 1-13, 2020. https://doi.org/10.1186/s12864-019-6413-7

R. Malhotra, and S. Kamal, “An empirical study to investigate oversampling methods for improving software defect prediction using imbalanced data,” Neurocomputing, vol.343, no. 28, 2019, pp. 120-140. https://doi.org/10.1016/j.neucom.2018.04.090

X. Zhang; Z. Shi; X. Liu; X. Li, “A Hybrid Feature Selection Algorithm for Classification Unbalanced Data Processing,” IEEE International Conference on Smart Internet of Things (SmartIoT), 17-19 August 2018, doi: 10.1109/SmartIoT.2018.00055.

I. Bolodurina, A. Shukhman, D. Parfenov, A. Zhigalov, and L. Zabrodina, “Investigation of the problem of classifying unbalanced datasets in identifying distributed denial of service attacks,” Journal of Physics: Conference Series, vol. 1679, 2020, doi:10.1088/1742-6596/1679/4/042020.

M. Rogalewicz, and R. Sika, “Methodologies of knowledge discovery from data and data mining methods in mechanical engineering,” Management and Production Engineering Review, vol. 7, no. 4, pp. 97-108, 2016. https://doi.org/10.1515/mper-2016-0040

C.R.M. Rosa, M.T.A. Steiner, and P.J. Steiner Neto, “Knowledge Discovery in Data Bases: a Case Study in a Private Institution of Higher Education,” IEEE Latin America Transactions, vol. 16, no. 7, pp. 2027-2032, 2018, doi: 10.1109/TLA.2018.8447372.

J. S. Aguilar-Ruiz, and J. Díaz-Díaz, “Selección de atributos relevantes basada en bootstrapping,” Departamento de lenguajes y sistemas informáticos. Universidad de Sevilla. ETS ingeniería informática. Actas del III Taller Nacional de Minería de Datos y Aprendizaje, TAMIDA2005, 2005, pp. 21-30.

J. Rodríguez, J. Hernández, J., “La deserción escolar universitaria en México, la experiencia de la universidad autónoma metropolitana campus Iztapalapa,” Revista Actualidades Investigativas en Educación, vol. 8, no. 1, 2011, pp. 1-31, doi: 10.15517/AIE.V8I1.9308.

Downloads

Published

2022-06-01
Metrics
Views/Downloads
  • Abstract
    205
  • PDF
    38

How to Cite

Urbina Nájera, A. B. and Méndez Ortega, L. A. (2022). Predictive Model for Taking Decision to Prevent University Dropout. International Journal of Interactive Multimedia and Artificial Intelligence, 7(4), 205–213. https://doi.org/10.9781/ijimai.2022.01.006