Optimal Parameter Estimation of Solar PV Panel Based on Hybrid Particle Swarm and Grey Wolf Optimization Algorithms.

Authors

DOI:

https://doi.org/10.9781/ijimai.2020.12.001

Keywords:

Optimization, Parameter Estimation, Renewable energies, Energy, Diode Model
Supporting Agencies
This project was supported by the Deanship of Scientific Research at Prince Sattam Bin Abdulaziz University under the research project No 2020/01/11742.

Abstract

The performance of a solar photovoltaic (PV) panel is examined through determining its internal parameters based on single and double diode models. The environmental conditions such as temperature and the level of radiation also influence the output characteristics of solar panel. In this research work, the parameters of solar PV panel are identified for the first time, as far as the authors know, using hybrid particle swarm optimization (PSO) and grey wolf optimizer (WGO) based on experimental datasets of I-V curves. The main advantage of hybrid PSOGWO is combining the exploitation ability of the PSO with the exploration ability of the GWO. During the optimization process, the main target is minimizing the root mean square error (RMSE) between the original experimental data and the estimated data. Three different solar PV modules are considered to prove the superiority of the proposed strategy. Three different solar PV panels are used during the evaluation of the proposed strategy. A comparison of PSOGWO with other state-of-the-art methods is made. The obtained results confirmed that the least RMSE values are achieved using PSOGWO for all case studies compared with PSO and GWO optimizers. Almost a perfect agreement between the estimated data and experimental data set is achieved by PSOGWO.

Downloads

Download data is not yet available.

References

K. Ishaque, Z. Salam, H.Taheri. “Simple, fast and accurate two-diode model for photovoltaic modules,” Solar Energy Materials Solar Cells, vol. 95, pp. 586-594, 2011.

HGG. Nunes, JAN. Pombo, SJPS. Mariano, MRA. Calado and JAM. Felippe de Souza. “A new high performance method for determining the parameters of PV cells and modules based on guaranteed convergence particle swarm optimization,”Applied Energy, vol. 211, pp. 774-791, 2018.

J. Ma, Z. Bi, TO. Ting, S. Hao, W. Hao. “Comparative performance on photovoltaic model parameter identification via bio-inspired algorithms,” Solar Energy, vol. 13, pp. 606-616, 2016.

A. Ayang, W. René, O.Mohand, D. Noël, S. Ndjakomo Essiane, P. Joseph Kessel, and E. Gabriel. “Maximum likelihood parameters estimation of single-diode model of photovoltaic generator,” Renewable Energy, vol. 130, pp. 111-121, 2019.

A. Chatterjee, K. Ali, and K. Dhruv. “Identification of photovoltaic source models,” IEEE Transactions on Energy Conversion, vol. 26, no.3, pp. 883-889, 2011.

AK. Tossa, YM. Soro, Y. Azoumah, D. Yamegueu. “A new approach to estimate the performance and energy productivity of photovoltaic modules in real operating conditions,” Solar Energy, vol. 10, pp. 543-560, 2014.

T. Easwarakhanthan, J. Bottin, I. Bouhouch, C. Boutrit .“Nonlinear minimization algorithm for determining the solar cell parameters with microcomputers,” International Journal of Solar Energy, vol.4, no.1, pp. 1-12, 1986.

M. Chegaar, Z. Ouennoughi, A. Hoffmann. “A new method for evaluating illuminated solar cell parameters,” Solid-State Electron, vol.45, pp. 293-296, 2001.

S.A. Blaifi, M. Samir, T. Bilal and S. Abdelhakim. “An enhanced dynamic modeling of PV module using Levenberg-Marquardt algorithm,” Renewable Energy, vol. 135, pp. 745-760, 2019.

S. Chen, F. Saeid Gholami and L. Sebastian. “Photovoltaic cells parameters extraction using variables reduction and improved shark optimization technique,” International Journal of Hydrogen Energy, 2020.

JA. Jervase, H. Bourdoucen, A. Al-Lawati. “Solar cell parameter extraction using genetic algorithms,” Measurement Science and Technology, vol. 12, no.11, pp. 1922-1925, 2001.

D. Oliva, A. A. Ewees, M. A. E. Aziz, A. E. Hassanien, M. Peréz-Cisneros. “A chaotic improved artificial bee colony for parameter estimation of photovoltaic cells,” Energies, vol.10, pp. 865, 2017.

R. Wang, Y. Zhan, H. Zhou. “Application of artificial bee colony in model parameter identification of solar cells,” Energies, vol.8, no.8, pp. 7563-7581, 2015.

M. Jamadi, F. Merrikh-Bayat, M. Bigdeli. “Very accurate parameter estimation of single- and double-diode solar cell models using a modified artificial bee colony algorithm,” International Journal Energy Environmental Engineering, vol. 7, no.1, pp. 13-25, 2016.

V. Khanna, B. K. Das, D. Bisht, Vandana, P. K. Singh. “A three diode model for industrial solar cells and estimation of solar cell parameters using PSO algorithm,” Renewable Energy, vol. 78, pp. 105–113, 2015.

R. Muralidharan. “Parameter extraction of solar photovoltaic cells and modules using current–voltage characteristics,” International Journal Ambient Energy, vol.38, no.5, pp. 509-513, 2017.

J. Ma, K. L. Man, S-U. Guan, T. O. Ting, P. W. H. Wong. “Parameter estimation of photovoltaic model via parallel particle swarm optimization algorithm,” International Journal of Energy Research, vol.40, no.3, pp. 343-352, 2016.

L. Guo, Z. Meng, Y. Sun, L. Wang. “Parameter identification and sensitivity analysis of solar cell models with cat swarm optimization algorithm,” Energy Conversion and Management, vol. 108, pp. 520-528, 2016.

A. Askarzadeh, A. Rezazadeh. “Parameter identification for solar cell models using harmony search-based algorithms,” Solar Energy, vol. 86, no.11, pp. 3241-3249, 2012.

F. Dkhichi, B. Oukarfi, A. Fakkar, N. Belbounaguia. “Parameter identification of solar cell model using Levenberg–Marquardt algorithm combined with simulated annealing,” Solar Energy, vol. 110, pp. 781-788, 2014.

Z. Chen, L. Wu, P. Lin, Y. Wu, S. Cheng. “Parameters identification of photovoltaic models using hybrid adaptive Nelder-Mead simplex algorithm based on eagle strategy,” Applied Energy, vol. 182, pp. 47–57, 2016.

N. F. Abdul Hamid, N. A. Rahim, J. Selvaraj. “Solar cell parameters identification using hybrid Nelder-Mead and modified particle swarm optimization,” Journal of Renewable and Sustainable Energy, vol.8, pp. 1-21, 2016.

X. Chen, B. Xu, C. Mei, Y. Ding, K. Li. “Teaching–learning–based artificial bee colony for solar photovoltaic parameter estimation,” Applied Energy, vol. 212, pp. 1578-1588, 2018.

K. Yu, B. Qu, C. Yue, S. Ge, X. Chen, J. Liang. “A performance-guided jaya algorithm for parameters identification of photovoltaic cell and module,” Applied Energy, vol. 237, pp. 241-257, 2019.

D. Oliva, M. A. El Aziz, A. E. Hassanien. “Parameter estimation of photovoltaic cells using an improved chaotic whale optimization algorithm,” Applied Energy, vol. 200, pp. 141-154, 2017.

A. M. Beigi, A. Maroosi. “Parameter identification for solar cells and module using a Hybrid Firefly and Pattern Search Algorithms,” Solar Energy, vol.171, 2018.

C. Saravanan, M.A. Panneerselvam. “A comprehensive analysis for extracting single diode PV model parameters by hybrid GA-PSO algorithm,” International Journal of Computer Applications, vol. 78, no. 8, pp. 16-19, 2013.

H. Nunes, J. Pombo, S. Mariano, M. Calado, J. F. de Souza. “A new high performance method for determining the parameters of pv cells and modules based on guaranteed convergence particle swarm optimization,” Applied Energy, vol. 211, pp. 774–791, 2018.

D. Yousri, T. S. Babu, D. Allam, V. K. Ramachandaramurthy, M. B. Eteiba. “Fractional chaotic ensemble particle swarm optimizer for identifying the single, double, and three diode photovoltaic models’ parameters,” Energy, 2020.

J. Kennedy and R. C. Eberhart. “Particle swarm optimization,” in Proceedings of IEEE international conference on neural networks, 1995, vol. 4, pp. 1942–1948.

S. M. Mirjalili, A. Lewis. “Grey wolf optimizer,” Advances in Engineering Software, vol. 69, pp. 46-61, 2014.

G. K. Harish Kumar. “Modeling of solar cell under different conditions by ant lion optimizer with LambertW function,” Applied Soft Computing, vol. 71, pp. 141-151, 2018, doi: 10.1016/J.ASOC.2018.06.025.

F. Fahmi, Muhammad and al. “Simple and efficient estimation of photovoltaic cells and modules parameters using approximation and correction technique,” PLOS, 2019, doi: 10.1371/journal.pone.0216201.

H. Rezk, I. Tyukhov, M. Al-Dhaifallah, A. Tikhonov. “Performance of data acquisition system for monitoring PV system parameters,” Measurement, vol. 104, pp. 204-211.

M. F. AlHajri, K. M. El-Naggar, M. R. AlRashidi, A. K. Al-Othman. “Optimal extraction of solar cell parameters using pattern search,” Renewable Energy, vol. 44, pp. 238-245, 2012.

M. R. AlRashidi, M. F. AlHajri, K. M. El-Naggar, A. K. Al-Othman. “A new estimation approach for determining the I–V characteristics of solar cells,” Solar Energy, vol. 85, pp. 1543-1550, 2011.

Downloads

Published

2021-06-01
Metrics
Views/Downloads
  • Abstract
    190
  • PDF
    25

How to Cite

Rezk, H., Arfaoui, J., and R. Gomaa, M. (2021). Optimal Parameter Estimation of Solar PV Panel Based on Hybrid Particle Swarm and Grey Wolf Optimization Algorithms. International Journal of Interactive Multimedia and Artificial Intelligence, 6(6), 145–155. https://doi.org/10.9781/ijimai.2020.12.001