Satisfiability Logic Analysis Via Radial Basis Function Neural Network with Artificial Bee Colony Algorithm.

Authors

DOI:

https://doi.org/10.9781/ijimai.2020.06.002

Keywords:

Bee Colony, Radial Basis Function, Neural Network, 2 Satisfiability, Logic
Supporting Agencies
This research was supported by Fundamental Research Grant Scheme (FRGS), Ministry of Education Malaysia, grant number 203/ PMATH/6711804 and Universiti Sains Malaysia (USM).

Abstract

Radial Basis Function Neural Network (RBFNN) is a variant of artificial neural network (ANN) paradigm, utilized in a plethora of fields of studies such as engineering, technology and science. 2 Satisfiability (2SAT) programming has been coined as a prominent logical rule that defines the identity of RBFNN. In this research, a swarm-based searching algorithm namely, the Artificial Bee Colony (ABC) will be introduced to facilitate the training of RBFNN. Worth mentioning that ABC is a new population-based metaheuristics algorithm inspired by the intelligent comportment of the honey bee hives. The optimization pattern in ABC was found fruitful in RBFNN since ABC reduces the complexity of the RBFNN in optimizing important parameters. The effectiveness of ABC in RBFNN has been examined in terms of various performance evaluations. Therefore, the simulation has proved that the ABC complied efficiently in tandem with the Radial Basis Neural Network with 2SAT according to various evaluations such as the Root Mean Square Error (RMSE), Sum of Squares Error (SSE), Mean Absolute Percentage Error (MAPE), and CPU Time. Overall, the experimental results have demonstrated the capability of ABC in enhancing the learning phase of RBFNN-2SAT as compared to the Genetic Algorithm (GA), Differential Evolution (DE) algorithm and Particle Swarm Optimization (PSO) algorithm.

Downloads

Download data is not yet available.

References

M. S. Alkhaawneh, (2019). Hybrid Cascade Forward Neural Network with Elman Neural Network for Disease Prediction. Arabian Journal for Science and Engineering, 44(11), 9209-9220.

W. A. T. W. Abdullah, (1992). Logic programming on a neural network. International journal of intelligent systems, 7(6), 513-519.

S. Sathasivam, (2010). Upgrading logic programming in Hopfield network. Sains Malaysiana, 39(1), 115-118.

N. Hamadneh, , S. Sathasivam, S. L. Tilahun, & O. H. Choon, (2012). Learning logic programming in radial basis function network via genetic algorithm. Journal of Applied Sciences (Faisalabad), 12(9): 840-847.

M. S. M. Kasihmuddin, M. A. Mansor, & S. Sathasivam, (2017). Hybrid Genetic Algorithm in the Hopfield Network for Logic Satisfiability Problem. Pertanika Journal of Science & Technology, 25(1), 139-152.

M.A.B. Mansor, M.S.B.M. Kasihmuddin, and S. Sathasivam, 2017. Robust Artificial Immune System in the Hopfield network for Maximum k-Satisfiability. International Journal of Interactive Multimedia and Artificial Intelligence, 4(4), 63-71.

N. Hamadneh, W. A. Khan, I. Khan, & A. S. Alsagri, (2019). Modeling and Optimization of Gaseous Thermal Slip Flow in Rectangular Microducts Using a Particle Swarm Optimization Algorithm. Symmetry, 11(4), 488-491.

H. de Leon-Delgado, R. J. Praga-Alejo, D. S. Gonzalez-Gonzalez, & M. Cantú-Sifuentes, (2018). Multivariate statistical inference in a radial basis function neural network. Expert Systems with Applications, 93, 313-321.

S. Alzaeemi, M.A. Mansor, M.S.M. Kasihmuddin, S. Sathasivam, and M. Mamat, (2020). Radial basis function neural network for 2 satisfiability programming. Indonesian Journal of Electrical Engineering and Computer Science, 18(1), 459-469.

M. H. Horng, Y. X. Lee, M. C. Lee, & R. J. Liou, (2012). Firefly metaheuristic algorithm for training the radial basis function network for data classification and disease diagnosis. In Theory and new applications of swarm intelligence. IntechOpen, 10(19), 7-28.

J. Yang, & J. Ma, (2019). Feed-forward neural network training using sparse representation. Expert Systems with Applications, 116, 255-264.

M. S. M. Kasihmuddin, M. A. Mansor, M. B. M. Faisal, & S. Sathasivam, (2019). Discrete Mutation Hopfield Neural Network in Propositional Satisfiability. Mathematics, 7(11), 1133-1154.

M.S.M., Kasihmuddin, Mansor, M.A. and Sathasivam, S., 2018. Discrete Hopfield Neural Network in Restricted Maximum k-Satisfiability Logic Programming. Sains Malaysiana, 47(6), 1327-1335.

M. S. M. Kasihmuddin, M. A. Mansor, & S. Sathasivam, (2017). Robust Artificial Bee Colony in the Hopfield Network for 2-Satisfiability Problem. Pertanika Journal of Science & Technology, 25(2), 453-468.

N. Hamadneh, S. Sathasivam, and O.H. Choon, (2012). Higher order logic programming in radial basis function neural network. Appl Math Sci, 6(3), 115-127.

H. V. H. Ayala, & L.dos Santos Coelho, (2016). Cascaded evolutionary algorithm for nonlinear system identification based on correlation functions and radial basis functions neural networks. Mechanical Systems and Signal Processing, 1(68), 378-393.

R. D. Dandagwhal, & V. D. Kalyankar, (2019). Design Optimization of Rolling Element Bearings Using Advanced Optimization Technique. Arabian Journal for Science and Engineering, 44(9), 7407-7422.

J. H. Holland, (1973). Genetic algorithms and the optimal allocation of trials. SIAM Journal on Computing, 2(2), 88-105.

D. E. Goldberg, & J. H. Holland, (1988). Genetic algorithms and machine learning, Machine Learning, 2(3), 95-99.

M. Pandey, M. Zakwan, P. K. Sharma, & Z. Ahmad, (2020). Multiple linear regression and genetic algorithm approaches to predict temporal scour depth near circular pier in non-cohesive sediment. ISH Journal of Hydraulic Engineering, 26(1), 96-103.

Z. Jing, J. Chen, & X. Li, (2019). RBF-GA: An adaptive radial basis function metamodeling with genetic algorithm for structural reliability analysis. Reliability Engineering & System Safety, 189, 42-57.

R. Storn and K. Price, (1997). Differential evolution a simple and efficient heuristic for global optimization over continuous spaces. Journal of Global Optimization, 11(4), 341-359.

A. Saha, A. Konar, P. Rakshit, A. L. Ralescu, & A. K. Nagar, (2013, August). Olfaction recognition by EEG analysis using differential evolution induced Hopfield neural net. In The 2013 International Joint Conference on Neural Networks, 4(9), 1-8.

J. Ilonen, J. K. Kamarainen, & J. Lampinen, (2003). Differential evolution training algorithm for feed-forward neural networks. Neural Processing Letters, 17(1), 93-105.

W. Tao, J. Chen, Y. Gui, & P. Kong, (2019). Coking energy consumption radial basis function prediction model improved by differential evolution algorithm. Measurement and Control, 52(8), 1122-1130.

R. Eberhart, & J. Kennedy, (1995, October). A new optimizer using particle swarm theory. In MHS’95. Proceedings of the Sixth International Symposium on Micro Machine and Human Science, 39-43.

J. Kennedy, & R. Eberhart, (1995, November). Particle swarm optimization. In Proceedings of ICNN’95-International Conference on Neural Networks, vol. 4, 1942-1948.

S. N. Qasem, & S. M. H. Shamsuddin, (2009, May). Improving performance of radial basis function network based with particle swarm optimization. In 2009 IEEE Congress on Evolutionary Computation, Man and Cybernetics, 3149-3156.

A. Alexandridis, E. Chondrodima, & H. Sarimveis, (2016). Cooperative learning for radial basis function networks using particle swarm optimization. Applied Soft Computing, 49, 485-497.

D. Karaboga, & B. Basturk, (2007). A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. Journal of global optimization, 39(3), 459-471.

D. Karaboga, & E. Kaya, (2019). Training ANFIS by using an adaptive and hybrid artificial bee colony algorithm (aABC) for the identification of nonlinear static systems. Arabian Journal for Science and Engineering, 44(4), 3531-3547.

G.E. Tsekouras, V. Trygonis, A. Maniatopoulos, A. Rigos, A. Chatzipavlis, J. Tsimikas, N. Mitianoudis, and A.F. Velegrakis, (2018). A Hermite neural network incorporating artificial bee colony optimization to model shoreline realignment at a reef-fronted beach. Neurocomputing, 280, 32-45.

T. Kurban, & E. Beşdok, (2009). A comparison of RBF neural network training algorithms for inertial sensor based terrain classification. Sensors, 9(8), 6312-6329.

J. Yu, & H. Duan, (2013). Artificial bee colony approach to information granulation-based fuzzy radial basis function neural networks for image fusion. Optik-International Journal for Light and Electron Optics, 124(17), 3103-3111.

B. Jafrasteh, & N. Fathianpour, (2017). A hybrid simultaneous perturbation artificial bee colony and back-propagation algorithm for training a local linear radial basis neural network on ore grade estimation. Neurocomputing, 235, 217-227.

S. K. Satapathy, S. Dehuri, & A. K. Jagadev, (2017). ABC optimized RBF network for classification of EEG signal for epileptic seizure identification. Egyptian Informatics Journal, 18(1), 55-66.

I. Aljarah, H. Faris, S. Mirjalili, & N. Al-Madi (2018). Training radial basis function networks using biogeography-based optimizer. Neural Computing and Applications, 29(7), 529-553.

N. A. Menad, A. Hemmati-Sarapardeh, A. Varamesh, & S. Shamshirband, (2019). Predicting solubility of CO2 in brine by advanced machine learning systems: Application to carbon capture and sequestration. Journal of CO2 Utilization, 33, 83-95.

S. Jiang, C. Lu, S. Zhang, X. Lu, S. B. Tsai, C. K. Wang, & C. H. Lee, (2019). Prediction of Ecological Pressure on Resource-Based Cities Based on an RBF Neural Network Optimized by an Improved ABC Algorithm. IEEE Access, 7, 47423-47436.

S. Sathasivam, (2010). Upgrading logic programming in Hopfield network. Sains Malaysiana, 39(1), 115-118.

T. Hoeink, (2019). Boolean satisfiability problem for discrete fracture network connectivity. Patent Application Publication, 180(53), 1-12.

S. Mukherjee, & S. Roy, (2015). Multi terminal net routing for island style FPGAs using nearly-2-SAT computation. In VLSI Design and Test (VDAT), 2015 19th International Symposium on IEEE, 10(1109), 1-6.

R. Miyashiro, & T. Matsui, (2005). A polynomial-time algorithm to find an equitable home away assignment. Operations Research Letters, 33(3), 235-241.

S. Even, A. Itai, & A. Shamir, (1976). On the Complexity of Timetable and Multicommodity Flow Problems. SIAM Journal on Computing, 5(4), 691-703.

J. Moody, & C. J. Darken, (1989). Fast learning in networks of locally-tuned processing units. Neural computation, 1(2), 281-294.

D. Lowe, (1989, October). Adaptive radial basis function nonlinearities, and the problem of generalisation. In Artificial Neural Networks, First IEE International Conference, 1(313), 171-175.

A. K. Hassan, M. Moinuddin, U. M. Al-Saggaf, & M. S. Shaikh, (2018). On the kernel optimization of radial basis function using nelder mead simplex. Arabian Journal for Science and Engineering, 43(6), 2805-2816.

A. Idri, A. Zakrani, & A. Zahi, (2010). Design of radial basis function neural networks for software effort estimation. IJCSI International Journal of Computer Science Issues, 7(4), 11-17.

S. B. Roh, S. K. Oh, W. Pedrycz, K. Seo, & Z. Fu, (2019). Design methodology for Radial Basis Function Neural Networks classifier based on locally linear reconstruction and Conditional Fuzzy C-Means clustering. International Journal of Approximate Reasoning, 106, 228-243.

M. T. Vakil-Baghmisheh, & N. Pavešić, (2004). Training RBF networks with selective backpropagation. Neurocomputing, 62, 39-64.

L.C. Kho, M. S. M. Kasihmuddin, M. A. Mansor, & S. Sathasivam, (2020). Logic Mining in League of Legends. Pertanika Journal of Science & Technology, 28(1), 211-225.

W. Jia, D. Zhao, T. Shen, C. Su, C. Hu, & Y. Zhao, (2014). A new optimized GA-RBF neural network algorithm. Computational intelligence and neuroscience, 1(4), 1-6.

H. Marouani, K. Hergli, H. Dhahri, & Y. Fouad, (2019). Implementation and Identification of Preisach Parameters: Comparison Between Genetic Algorithm, Particle Swarm Optimization, and Levenberg–Marquardt Algorithm. Arabian Journal for Science and Engineering, 44(8), 6941-6949.

M. Awad, (2010). Optimization RBFNNs parameters using genetic algorithms: applied on function approximation. International Journal of Computer Science and Security (IJCSS), 4(3), 295-307.

L. J. Eshelman, & J. D. Schaffer, (1993). Real-coded genetic algorithms and interval-schemata. In Foundations of genetic algorithms, Vol. 2. Elsevier, 187-202.

S. L. Wang, F., Ng, T. F. Morsidi, H. Budiman, & S. C. Neoh, (2020). Insights into the effects of control parameters and mutation strategy on self-adaptive ensemble-based differential evolution. Information Sciences, 514, 203-233.

K. R. Opara, & J. Arabas, (2019). Differential Evolution: A survey of theoretical analyses. Swarm and evolutionary computation, 44, 546-558.

Y. Fukuyama, & H. Yoshida, (2001, May). A particle swarm optimization for reactive power and voltage control in electric power systems. In Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat. No. 01TH8546), vol. 1, 87-93.

D. Karaboga, (2005). An idea based on honey bee swarm for numerical optimization. Technical reporttr 06, Erciyes university, engineering faculty, computer engineering department, Vol. 200, 1-10.

N. Hamadneh, S. Sathasivam, S. L. Tilahun, & O. H. Choon, (2014, July). Satisfiability of logic programming based on radial basis function neural networks. In AIP Conference Proceedings, 1605(1), 547-550.

M. S. M. Kasihmuddin, M. A. Mansor, & S. Sathasivam, (2016). Genetic Algorithm for Restricted Maximum k-Satisfiability in the Hopfield Network. International Journal of Interactive Multimedia & Artificial Intelligence, 4(2), 52-60.

M. S. M. Kasihmuddin, M. A. Mansor, & S. Sathasivam, (2016). Artificial Bee Colony in the Hopfield Network for Maximum k-Satisfiability Problem. Journal of Informatics and Mathematical Sciences, 8(5), 317-334.

C. Caleiro, F. Casal, & A. Mordido, (2019). Generalized probabilistic satisfiability and applications to modelling attackers with side-channel capabilities, Theoretical Computer Science, 781, 39-62.

Downloads

Published

2021-06-01
Metrics
Views/Downloads
  • Abstract
    180
  • PDF
    45

How to Cite

Mohd Kasihmuddin, M. S., Asyraf Mansor, M., Abdulhabib Alzaeemi, S., and Sathasivam, S. (2021). Satisfiability Logic Analysis Via Radial Basis Function Neural Network with Artificial Bee Colony Algorithm. International Journal of Interactive Multimedia and Artificial Intelligence, 6(6), 164–173. https://doi.org/10.9781/ijimai.2020.06.002