A Collaborative Filtering Probabilistic Approach for Recommendation to Large Homogeneous and Automatically Detected Groups.

Authors

  • Remigio Hurtado Universidad Politécnica Salesiana.
  • Jesús Bobadilla Universidad Politécnica de Madrid.
  • Abraham Gutiérrez Universidad Politécnica de Madrid.
  • Santiago Alonso Universidad Politécnica de Madrid.

DOI:

https://doi.org/10.9781/ijimai.2020.03.002

Keywords:

Recommendation Systems, Clustering, Collaborative Filtering, Dimensionality Reduction, Group Recommendation

Abstract

In the collaborative filtering recommender systems (CFRS) field, recommendation to group of users is mainly focused on stablished, occasional or random groups. These groups have a little number of users: relatives, friends, colleagues, etc. Our proposal deals with large numbers of automatically detected groups. Marketing and electronic commerce are typical targets of large homogenous groups. Large groups present a major difficulty in terms of automatically achieving homogeneity, equilibrated size and accurate recommendations. We provide a method that combines diverse machine learning algorithms in an original way: homogeneous groups are detected by means of a clustering based on hidden factors instead of ratings. Predictions are made using a virtual user model, and virtual users are obtained by performing a hidden factors aggregation. Additionally, this paper selects the most appropriate dimensionality reduction for the explained RS aim. We conduct a set of experiments to catch the maximum cumulative deviation of the ratings information. Results show an improvement on recommendations made to large homogeneous groups. It is also shown the desirability of designing specific methods and algorithms to deal with automatically detected groups.

Downloads

Download data is not yet available.

Downloads

Published

2020-06-01
Metrics
Views/Downloads
  • Abstract
    5
  • PDF
    2

How to Cite

Hurtado, R., Bobadilla, J., Gutiérrez, A., and Alonso, S. (2020). A Collaborative Filtering Probabilistic Approach for Recommendation to Large Homogeneous and Automatically Detected Groups. International Journal of Interactive Multimedia and Artificial Intelligence, 6(2), 90–100. https://doi.org/10.9781/ijimai.2020.03.002

Most read articles by the same author(s)