Measuring the Difference Between Pictures From Controlled and Uncontrolled Sources to Promote a Destination. A Deep Learning Approach.

Authors

  • Angel Diaz Pacheco Universidad de Guanajuato.
  • Miguel A. Álvarez Carmona Consejo Nacional de Humanidades, Ciencias y Tecnologías (CONAHCyT).
  • Ansel Y. Rodríguez González Consejo Nacional de Humanidades, Ciencias y Tecnologías (CONAHCyT).
  • Hugo Carlos Consejo Nacional de Humanidades, Ciencias y Tecnologías (CONAHCyT).
  • Ramón Aranda Centro de Investigación en Matemáticas - Unidad Mérida.

DOI:

https://doi.org/10.9781/ijimai.2023.10.003

Keywords:

Destination Image, Deep Learning, Natural Language Processing, Destination Marketing Organization, Scene Recognition

Abstract

Promoting a destination is a major task for Destination Marketing Organizations (DMOs). Although DMOs control, to some extent, the information presented to travelers (controlled sources), there are other different sources of information (uncontrolled sources) that could project an unfavorable image of the destination. Measuring differences between information sources would help design strategies to mitigate negative factors. In this way, we propose a deep learning-based approach to automatically measure the changes between images from controlled and uncontrolled information sources. Our approach exempts experts from the time-consuming task of assessing enormous quantities of pictures to track changes. To our best knowledge, this work is the first work that focuses on this issue using technological paradigms. Notwithstanding this, our approach paves novel pathways to acquire strategic insights that can be harnessed for the augmentation of destination development, the refinement of recommendation systems, the analysis of online travel reviews, and myriad other pertinent domains.

Downloads

Download data is not yet available.

References

UNWTO, Panorama del turismo internacional, Edición 2020. World Tourism Organization (UNWTO), 2021.

A. Feizollah, M. M. Mostafa, A. Sulaiman, Z. Zakaria, A. Firdaus, “Exploring halal tourism tweets on social media,” Journal of Big Data, vol. 8, no. 1, pp. 1–18, 2021.

B. Toumeh, “Exploitation of digital transformation technologies in smart tourism destinations: Facts and challenges,” Digital Transformation: IoT, AI, VR, Big Data, p. 124, 2021.

B. T. Khoa, N. M. Ly, V. T. T. Uyen, N. T. T. Oanh, B. T. Long, “The impact of social media marketing on the travel intention of z travelers,” in 2021 IEEE International IOT, Electronics and Mechatronics Conference (IEMTRONICS), 2021, pp. 1–6, IEEE.

M. T. Cuomo, D. Tortora, P. Foroudi, A. Giordano, G. Festa, G. Metallo, “Digital transformation and tourist experience co-design: Big social data for planning cultural tourism,” Technological Forecasting and Social Change, vol. 162, p. 120345, 2021, doi: 10.1016/j.techfore.2020.120345.

F. A. C. Calderón, M. V. V. Blanco, “Impacto de internet en el sector turístico,” Revista UNIANDES Episteme, vol. 4, no. 4, pp. 477–490, 2017.

L. Lalicic, A. Huertas, A. Moreno, M. Jabreel, “Emotional brand communication on facebook and twitter: Are dmos successful?,” Journal of Destination Marketing & Management, vol. 16, p. 100350, 2020, doi: 10.1016/j.jdmm.2019.03.004.

M. del Mar Gálvez-Rodríguez, J. Alonso-Cañadas, A. H. de Rosario, C. Caba-Pérez, “Exploring best practices for online engagement via facebook with local destination management organisations (dmos) in europe: A longitudinal analysis,” Tourism Management Perspectives, vol. 34, p. 100636, 2020, doi: 10.1016/j.tmp.2020.100636.

J. L. Crompton, “Motivations for pleasure vacation,” Annals of Tourism Research, vol. 6, no. 4, pp. 408–424, 1979, doi: 10.1016/0160-7383(79)90004-5.

S. Choi, X. Y. Lehto, A. M. Morrison, “Destination image representation on the web: Content analysis of macau travel related websites,” Tourism management, vol. 28, no. 1, pp. 118–129, 2007.

J. Li, F. Ali, W. Kim, “Reexamination of the role of destination image in tourism: An updated literature review,” e-Review of Tourism Research, vol. 12, pp. 191– 209, 2015.

C. Gunn, Vacationscape: Developing Tourist Areas. Taylor & Francis, 1997.

M. R. González-Rodríguez, R. Martínez-Torres, S. Toral, “Post-visit and pre-visit tourist destination image through eWOM sentiment analysis and perceived helpfulness,” International Journal of Contemporary Hospitality Management, vol. 28, no. 11, pp. 2609–2627, 2016, doi: 10.1108/ijchm-02-2015-0057.

S. Baloglu, K. W. McCleary, “A model of destination image formation,” Annals of Tourism Research, vol. 26, no. 4, pp. 868–897, 1999, doi: 10.1016/s0160-7383(99)00030-4.

A. Beerli, J. D. Martín, “Factors influencing destination image,” Annals of Tourism Research, vol. 31, no. 3, pp. 657–681, 2004, doi: 10.1016/j.annals.2004.01.010.

D. M. Frías, M. A. Rodríguez, J. A. Castañeda, “Internet vs. travel agencies on pre-visit destination image formation: An information processing view,” Tourism Management, vol. 29, no. 1, pp. 163–179, 2008, doi: 10.1016/j.tourman.2007.02.020.

M. G. Gallarza, I. G. Saura, H. C. García, “Destination image,” Annals of Tourism Research, vol. 29, no. 1, pp. 56– 78, 2002, doi: 10.1016/s0160-7383(01)00031-7.

R. Govers, F. M. Go, “Deconstructing destination image in the information age,” Information Technology & Tourism, vol. 6, no. 1, pp. 13–29, 2003, doi: 10.3727/109830503108751199.

B. Bramwell, L. Rawding, “Tourism marketing images of industrial cities,” Annals of Tourism Research, vol. 23, no. 1, pp. 201–221, 1996, doi: 10.1016/0160-7383(95)00061-5.

W. C. Gartner, “Image formation process,” Journal of Travel & Tourism Marketing, vol. 2, no. 2-3, pp. 191–216, 1994, doi: 10.1300/j073v02n02_12.

J.-R. Chang, M.-Y. Chen, L.-S. Chen, S.-C. Tseng, “Why customers don’t revisit in tourism and hospitality industry?,” IEEE Access, vol. 7, pp. 146588–146606, 2019, doi: 10.1109/access.2019.2946168.

M. Nowacki, A. Niezgoda, “Identifying unique features of the image of selected cities based on reviews by TripAdvisor portal users,” Scandinavian Journal of Hospitality and Tourism, vol. 20, no. 5, pp. 503– 519, 2020, doi: 10.1080/15022250.2020.1833362.

M. qi Cao, J. Liang, M. zhao Li, Z. hao Zhou, M. Zhu, “TDIVis: visual analysis of tourism destination images,” Frontiers of Information Technology & Electronic Engineering, vol. 21, no. 4, pp. 536–557, 2020, doi: 10.1631/fitee.1900631.

S. Stepchenkova, A. P. Kirilenko, E. Shichkova, “Influential factors for intention to visit an adversarial nation: increasing robustness and validity of findings,” International Journal of Tourism Cities, vol. 5, no. 3, pp. 491–510, 2019, doi: 10.1108/IJTC-11-2018-0085.

E. Marine-Roig, B. Ferrer-Rosell, N. Daries, E. Cristobal-Fransi,“Measuring gastronomic image online,” International Journal of Environmental Research and Public Health, vol. 16, no. 23, p. 4631, 2019, doi: 10.3390/ijerph16234631.

S. Song, K. Park, et al., “Thematic analysis of destination images for social media engagement marketing,” Industrial Management & Data Systems, vol. ahead- of-print, no. ahead-of-print, 2020, doi: 10.1108/IMDS- 12-2019-0667.

M. T. Liu, Y. Liu, Z. Mo, K. L. Ng, “Using text mining to track changes in travel destination image: the case of macau,” Asia Pacific Journal of Marketing and Logistics, vol. 33, no. 2, pp. 371–393, 2020, doi: 10.1108/APJML-08-2019-0477.

R. Wang, J. Luo, S. S. Huang, “Developing an artificial intelligence framework for online destination image photos identification,” Journal of Destination Marketing & Management, vol. 18, p. 100512, 2020, doi: 10.1016/j.jdmm.2020.100512.

E. Marine-Roig, A. Huertas, “How safety affects destination image projected through online travel reviews,” Journal of Destination Marketing & Management, vol. 18, p. 100469, 2020, doi: 10.1016/j.jdmm.2020.100469.

L. B. Ferreira, J. d. M. E. Giraldi, “Rio de janeiro’s image as the 2016 olympic games host city: analysis of the main image formation factors,” Journal of Hospitality and Tourism Insights, vol. 3, no. 2, pp. 115–135, 2020, doi: 10.1108/JHTI-03-2019-0037.

K. Zhang, Y. Chen, Z. Lin, “Mapping destination images and behavioral patterns from user-generated photos: a computer vision approach,” Asia Pacific Journal of Tourism Research, vol. 25, no. 11, pp. 1199– 1214, 2020, doi: 10.1080/10941665.2020.1838586.

L. J. Nixon, “An online image annotation service for destination image measurement,” e-Review of Tourism Research, vol. 17, no. 2, 2019.

G. Sun, “Symmetry analysis in analyzing cognitive and emotional attitudes for tourism consumers by applying artificial intelligence python technology,” Symmetry, vol. 12, no. 4, p. 606, 2020, doi: 10.3390/sym12040606.

S. L. Toral, M. R. Martínez-Torres, M. R. Gonzalez- Rodriguez, “Identification of the unique attributes of tourist destinations from online reviews,” Journal of Travel Research, vol. 57, no. 7, pp. 908–919, 2017, doi: 10.1177/0047287517724918.

R. Micera, R. Crispino, “Destination web reputation as “smart tool” for image building: the case analysis of naples city-destination,” International Journal of Tourism Cities, vol. 3, no. 4, pp. 406–423, 2017, doi: 10.1108/ijtc-11-2016-0048.

C. H. Chin, M. C. Lo, Z. bin Razak, P. Pasbakhsh, A. A. Mohamad, “Resources confirmation for tourism destinations marketing efforts using PLS-MGA: The moderating impact of semirural and rural tourism destination,” Sustainability, vol. 12, no. 17, p. 6787, 2020, doi: 10.3390/su12176787.

R. Leung, H. Q. Vu, J. Rong, “Understanding tourists’ photo sharing and visit pattern at non-first tier attractions via geotagged photos,” Information Technology & Tourism, vol. 17, no. 1, pp. 55–74, 2017, doi: 10.1007/s40558-017-0078-3.

L. J. B. Nixon, “An online image annotation service for destination image measurement,” e-Review of Tourism Research, vol. 17, no. 2, 2019.

X. Xiao, C. Fang, H. Lin, “Characterizing tourism destination image using photos’ visual content,” ISPRS International Journal of Geo-Information, vol. 9, no. 12, p. 730, 2020, doi: 10.3390/ijgi9120730.

A. Arabadzhyan, P. Figini, L. Vici, “Measuring destination image: a novel approach based on visual data mining. a methodological proposal and an application to european islands,” Journal of Destination Marketing & Management, vol. 20, p. 100611, 2021, doi: 10.1016/j.jdmm.2021.100611.

V. Bui, A. R. Alaei, H. Q. Vu, G. Li, R. Law, “Revisiting tourism destination image: A holistic measurement framework using big data,” p. 004728752110247, 2021, doi: 10.1177/00472875211024749.

Z. He, N. Deng, X. R. Li, H. Gu, “How to “read” a destination from images? machine learning and network methods for DMOs’ image projection and photo evaluation,” p. 004728752199513, 2021, doi: 10.1177/0047287521995134.

L. Xie, F. Lee, L. Liu, K. Kotani, Q. Chen, “Scene recognition: A comprehensive survey,” Pattern Recognition, vol. 102, p. 107205, 2020, doi: 10.1016/j.patcog.2020.107205.

A. Oliva, A. Torralba, “The role of context in object recognition,” Trends in Cognitive Sciences, vol. 11, no. 12, pp. 520–527, 2007, doi: 10.1016/j.tics.2007.09.009.

B. Zhou, A. Lapedriza, A. Khosla, A. Oliva, A. Torralba, “Places: A 10 million image database for scene recognition,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 40, no. 6, pp. 1452–1464, 2018, doi: 10.1109/tpami.2017.2723009.

Y. Tang, L. H. U, Y. Cai, N. Mamoulis, R. Cheng, “Earth mover’s distance based similarity search at scale,” Proceedings of the VLDB Endowment, vol. 7, no. 4, pp. 313–324, 2013, doi: 10.14778/2732240.2732249.

G. A. Miller, WordNet: An electronic lexical database. MIT press, 1998.

Z. Wu, M. Palmer, “Verb Semantics and Lexical Selection,” arXiv e-prints, pp. cmp–lg/9406033, 1994.

T. Pedersen, S. Patwardhan, J. Michelizzi, et al., “Wordnet:: Similarity-measuring the relatedness of concepts.,” in AAAI, vol. 4, 2004, pp. 25–29.

T. Mikolov, W.-t. Yih, G. Zweig, “Linguistic regularities in continuous space word representations,” in Proceedings of the 2013 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Atlanta, Georgia, 2013, pp. 746–751, Association for Computational Linguistics.

T. Mikolov, “Google code archive - long- term storage for google code project hosting,” 2013. [Online]. Available: https://code.google.com/archive/p/word2vec/.

SECTUR, “Compendio estadístico del turismo en méxico 2020,” 2021. [Online]. Available: https://datatur.sectur.gob.mx.

D. Rendón, “Sargazo en cancún: Por qué llega y en qué temporada hay más,” 2019. [Online]. Available: https://tipsparatuviaje.com/sargazo-en-cancun/.

BBC, “Women’s day: Protesters clash with police in mexico,” 2021. [Online]. Available: https://www.bbc.com/news/world-latin-america-56329666.

M. A. Navarro-Quintero, Huracan Willa y sus efectos en Nayarit, vol. 1 of 1. Senado de La Republica, 1 ed., 2018.

J. Martínez, “Lo que sabemos de caso giovanni lópez, detenido en ixtlahuacán,” 2020. [Online]. Available: https://www.milenio.com/policia/giovanni-lopez-asesinado-jalisco-mexico-cubrebocas.

CNN, “Acapulco, la ciudad más peligrosa de méxico para las mujeres, según la onu,” 2017. [Online]. Available: https://cnnespanol.cnn.com/2017/12/28/acapulco-la-ciudad-mas-peligrosa-de-mexico-para-las-mujeres-segun-la-onu/.

W. Han, L. Cao, S. Xu, “A method of the coverage ratio of street trees based on deep learning,” International Journal of Interactive Multimedia and Artificial Intelligence, vol. 7, no. 5, p. 23, 2022, doi: 10.9781/ijimai.2022.07.003.

Z. H. Arif, M. Mahmoud, K. H. Abdulkareem, S. Kadry, M. A. Mohammed, M. N. Al-Mhiqani, A. S. Al- Waisy, J. Nedoma, “Adaptive deep learning detection model for multi- foggy images,” International Journal of Interactive Multimedia and Artificial Intelligence, vol. 7, no. 7, p. 26, 2022, doi: 10.9781/ijimai.2022.11.008.

Downloads

Published

2025-08-29
Metrics
Views/Downloads
  • Abstract
    348
  • PDF
    50

How to Cite

Diaz Pacheco, A., Álvarez Carmona, M. A., Rodríguez González, A. Y., Carlos, H., and Aranda, R. (2025). Measuring the Difference Between Pictures From Controlled and Uncontrolled Sources to Promote a Destination. A Deep Learning Approach. International Journal of Interactive Multimedia and Artificial Intelligence, 9(4), 18–31. https://doi.org/10.9781/ijimai.2023.10.003