Generative Artificial Intelligence in Education: From Deceptive to Disruptive.

Authors

DOI:

https://doi.org/10.9781/ijimai.2024.02.011

Keywords:

Artificial Intelligence, Ethical Implications, Ethical Principles, Generative AI, Large Language Models
Supporting Agencies
The Ministry of Science and Innovation partially funded this monograph through the AvisSA project grant number (PID2020- 118345RB-I00). The Departament de Recerca i Universitats de la Generalitat de Catalunya partially funded this monograph through the 2021 SGR 01412 research groups award.

Abstract

Generative Artificial Intelligence (GenAI) has emerged as a promising technology that can create original content, such as text, images, and sound. The use of GenAI in educational settings is becoming increasingly popular and offers a range of opportunities and challenges. This special issue explores the management and integration of GenAI in educational settings, including the ethical considerations, best practices, and opportunities. The potential of GenAI in education is vast. By using algorithms and data, GenAI can create original content that can be used to augment traditional teaching methods, creating a more interactive and personalized learning experience. In addition, GenAI can be utilized as an assessment tool and for providing feedback to students using generated content. For instance, it can be used to create custom quizzes, generate essay prompts, or even grade essays. The use of GenAI as an assessment tool can reduce the workload of teachers and help students receive prompt feedback on their work. Incorporating GenAI in educational settings also poses challenges related to academic integrity. With availability of GenAI models, students can use them to study or complete their homework assignments, which can raise concerns about the authenticity and authorship of the delivered work. Therefore, it is important to ensure that academic standards are maintained, and the originality of the student's work is preserved. This issue highlights the need for implementing ethical practices in the use of GenAI models and ensuring that the technology is used to support and not replace the student's learning experience.

Downloads

Download data is not yet available.

References

V. Mahajan, “100+ Incredible ChatGPT Statistics & Facts in 2024,” 2023. [Online]. https://bit.ly/48M9fdX

P. H. Diamandis and S. Kotler, Abundance: The Future Is Better Than You Think (Exponential Technology Series). The Free Press, 2012.

F. J. García-Peñalvo and A. Vázquez-Ingelmo, “What do we mean by GenAI? A systematic mapping of the evolution, trends, and techniques involved in Generative AI,” International Journal of Interactive Multimedia and Artificial Intelligence, vol. 8, no. 4, pp. 7-16, 2023, doi: 10.9781/ijimai.2023.07.006.

R. R. Schaller, “Moore’s law: past, present, and future,” IEEE Spectrum, vol. 34, no. 6, pp. 52-59, 1997, doi: 10.1109/6.591665.

F. Rosenblatt, “The perceptron: A probabilistic model for information storage and organization in the brain,” Psychological Review, vol. 65, no. 6, pp. 386–408, 1958, doi: 10.1037/h0042519.

Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521, no. 7553, pp. 436-444, 2015, doi: 10.1038/nature14539.

A. Vaswani et al., “Attention is all you need,” in Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, 2017, pp. 5998–6008.

D. Peral-García, J. Cruz-Benito, and F. J. García-Peñalvo, “Systematic literature review: Quantum machine learning and its applications,” Computer Science Review, vol. 51, 2024, Art no. 100619, doi: 10.1016/j.cosrev.2024.100619.

W. X. Zhao et al., “A Survey of Large Language Models,” arXiv, 2023, Art no. arXiv:2303.18223v13, doi: 10.48550/arXiv.2303.18223.

Y. Chang et al., “A Survey on Evaluation of Large Language Models,” ACM Transactions on Intelligent Systems and Technology, vol. In Press, 2024, doi: 10.1145/3641289.

Z. Yang et al., “The Dawn of LMMs: Preliminary Explorations with GPT-4V(ision),” arXiv, 2023, Art no. arXiv:2309.17421v2, doi: 10.48550/arXiv.2309.17421.

OpenAI, “GPT-4V(ision) System Card,” OpenAI, USA, 2023. [Online]. Available: https://bit.ly/3TOD21h

S. Yin, S. Bai, J. Huang, X. Chen, and Y. Zhang, “A Survey on Multimodal Large Language Models,” arXiv, 2023, Art no. arXiv:2306.13549v1, doi: 10.48550/arXiv.2306.13549.

S. Bubeck et al., “Sparks of Artificial General Intelligence: Early experiments with GPT-4,” arXiv, 2023, Art no. arXiv:2303.12712v5, doi: 10.48550/arXiv.2303.12712.

V. Elliott, “Generative AI Learned Nothing From Web 2.0,” Wired, December 28, 2023. [Online]. Available: https://d66z.short.gy/BZ57XL

J. M. Flores-Vivar and F. J. García-Peñalvo, “Reflections on the ethics, potential, and challenges of artificial intelligence in the framework of quality education (SDG4),” Comunicar, vol. 31, no. 74, pp. 35-44, 2023, doi: 10.3916/C74-2023-03.

S. Altman, G. Brockman, and I. Sutskever, “Governance of superintelligence,” In: OpenAI, 2023. Available from: https://bit.ly/3q6NFjv

F. A. Croitoru, V. Hondru, R. T. Ionescu, and M. Shah, “Diffusion Models in Vision: A Survey,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 45, no. 9, pp. 10850-10869, 2023, doi: 10.1109/TPAMI.2023.3261988.

T. B. Brown et al., “Language Models are Few-Shot Learners,” arXiv, 2020, Art no. arXiv:2005.14165v4 doi: 10.48550/arXiv.2005.14165.

OpenAI, “GPT-4 Technical Report,” arXiv, 2023, Art no. arXiv:2303.08774v4, doi: 10.48550/arXiv.2303.08774.

D. Patel and G. Wong, “GPT-4 Architecture, Infrastructure, Training Dataset, Costs, Vision, MoE. Demystifying GPT-4: The engineering tradeoffs that led OpenAI to their architecture,” 2023. [Online]. https://bit.ly/3SbiU8r

T. Harris, “AI and The Future of Life,” 2023. [Online]. https://d66z.short.gy/LhQinU

C. Fourrier, “2023, year of open LLMs,” In: Hugging Face, 2023. [Online]. Available from: https://d66z.short.gy/vcHitF

S. R.Bowman, “Eight Things to Know about Large Language Models,” arXiv, 2023, Art no. arXiv:2304.00612v1 doi: 10.48550/arXiv.2304.00612.

A. Radford, K. Narasimhan, T. Salimans, and I. Sutskever, “Improving Language Understanding by Generative Pre-Training,” OpenAI, USA, 2018. [Online]. Available: https://d66z.short.gy/0HREdH

A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and I. Sutskever, “Language Models are Unsupervised Multitask Learners,” OpenAI, USA, 2019. [Online]. Available: https://bit.ly/3Mq72Lz

J. Sevilla, L. Heim, A. Ho, T. Besiroglu, M. Hobbhahn, and P. Villalobos, “Compute Trends Across Three Eras of Machine Learning,” in 2022 International Joint Conference on Neural Networks (IJCNN) (18-23 July 2022, Padua, Italy), 2022. doi: 10.1109/IJCNN55064.2022.9891914.

J. Wei et al., “Chain-of-Thought Prompting Elicits Reasoning in Large Language Models,” arXiv, 2023, Art no. arXiv:2201.11903v6, doi: 10.48550/ arXiv.2201.11903.

M. Nye et al., “Show Your Work: Scratchpads for Intermediate Computation with Language Models,” arXiv, 2021, Art no. arXiv:2112.00114v1, doi: 10.48550/arXiv.2112.00114.

J. Wei et al., “Emergent Abilities of Large Language Models,” arXiv, 2022, Art no. arXiv:2206.07682v2 doi: 10.48550/arXiv.2206.07682.

T. Kojima, S. S. Gu, M. Reid, Y. Matsuo, and Y. Iwasawa, “Large Language Models are Zero-Shot Reasoners,” arXiv, 2023, Art no. arXiv:2205.11916v4 doi: 10.48550/arXiv.2205.11916.

J. Zhou et al., “Instruction-Following Evaluation for Large Language Models,” arXiv, 2023, Art no. arXiv:2311.07911v1, doi: 10.48550/ arXiv.2311.07911.

A. Srivastava et al., “Beyond the Imitation Game: Quantifying and extrapolating the capabilities of language models,” arXiv, 2023, Art no. arXiv:2206.04615v3 doi: 10.48550/arXiv.2206.04615.

M. Abdou, A. Kulmizev, D. Hershcovich, S. Frank, E. Pavlick, and A. Søgaard, “Can Language Models Encode Perceptual Structure Without Grounding? A Case Study in Color,” in Proceedings of the 25th Conference on Computational Natural Language Learning, A. Bisazza and O. Abend Eds.: Association for Computational Linguistics, 2021, pp. 109-132. doi: 10.18653/v1/2021.conll-1.9.

J. Andreas, “Language Models as Agent Models,” in Findings of the Association for Computational Linguistics: EMNLP 2022, Y. Goldberg, Z. Kozareva, and Y. Zhang Eds.: Association for Computational Linguistics, 2022, pp. 5769-5779. doi: 10.18653/v1/2022.findings-emnlp.423.

B. Z. Li, M. Nye, and J. Andreas, “Implicit Representations of Meaning in Neural Language Models,” arXiv, 2021, Art no. arXiv:2106.00737v1 doi: 10.48550/arXiv.2106.00737.

H. Levesque, E. Davis, L. Morgenstern, and T. i. c. o. t. p. o. k. r. a. reasoning., “The winograd schema challenge,” in Proceedings of the Thirteenth International Conference on Principles of Knowledge Representation and Reasoning: Association for the Advancement of Artificial Intelligence, 2012, pp. 552-561.

J. Hoffmann et al., “Training Compute-Optimal Large Language Models,” arXiv, 2022, Art no. arXiv:2203.15556v1, doi: 10.48550/arXiv.2203.15556.

R. Taori et al., “Alpaca: A Strong, Replicable Instruction-Following Model,” Stanford University, USA, 2023. [Online]. Available: https://bit.ly/444TrRx

H. Touvron et al., “LLaMA: Open and Efficient Foundation Language Models,” arXiv, 2023, Art no. arXiv:2302.13971v1, doi: 10.48550/arXiv.2302.13971.

S. Willinson, “Stanford Alpaca, and the Acceleration of On-Device Large Language Model Development,” In: Simon Willinson’s Blog, 2023. [Online]. Available from: https://bit.ly/3r3ahlN

L. Zheng et al., “Judging LLM-as-a-Judge with MT-Bench and Chatbot Arena,” arXiv, 2023, Art no. arXiv:2306.05685v4 doi: 10.48550/arXiv.2306.05685.

S. Pichai and D. Hassabis, “Our next-generation model: Gemini 1.5,” In: AI. 2024. [Online]. Available from: https://d66z.short.gy/cT19l1

E. J. Hu et al., “LoRA: Low-Rank Adaptation of Large Language Models,” arXiv, 2021, Art no. arXiv:2106.09685v2, doi: 10.48550/arXiv.2106.09685.

T. Wang, J. Zhao, and W. V. Eaton, “LoRA Land: Fine-Tuned Open-Source LLMs that Outperform GPT-4,” In: Predibase, 2024. [Online]. Available from: https://d66z.short.gy/4ec8RY.

N. Stephenson, The Diamond Age: Or, A Young Lady’s Illustrated Primer. Bantam Books, 1995.

N. Stephenson, Snowcrash. Bantam Books, 1992.

B. Srinivasan, The Network State: How To Start a New Country. USA: Amazon Kindle, 2022.

P. H. Diamandis and S. Kotler, The Future Is Faster Than You Think: How Converging Technologies Are Transforming Business, Industries, and Our Lives. Simon & Schuster, 2020.

F. J. García-Peñalvo and J. García Carrasco, “Educational hypermedia resources facilitator,” Computers & Education, vol. 44, no. 3, pp. 301-325, 2005, doi: 10.1016/j.compedu.2004.02.004.

F. J. García-Peñalvo and A. M. Seoane-Pardo, “An updated review of the concept of eLearning. Tenth anniversary,” Education in the Knowledge Society, vol. 16, no. 1, pp. 119-144, 2015, doi: 10.14201/eks2015161119144.

M. Sharples, M. Milrad, I. Arnedillo, and G. Vavoula, “Mobile Learning: Small devices, Big Issues,” in Technology Enhanced Learning: Principles and Products N. Balacheff, S. Ludvigsen, T. d. Jong, A. Lazonder, and S. Barnes Eds. Heidelberg: Springer, 2009, pp. 233-249.

C. J. Villagrá-Arnedo, F. J. Gallego-Durán, F. Llorens-Largo, R. SatorreCuerda, P. Compañ-Rosique, and R. Molina-Carmona, “Time-Dependent Performance Prediction System for Early Insight in Learning Trends,” International Journal of Interactive Multimedia and Artificial Intelligence, vol. 6, no. 2, pp. 112-124, 2020, doi: 10.9781/ijimai.2020.05.006.

S. C. Cifuentes, S. G. García, M. P. Andrés-Sebastiá, J. D. Camba, and M. Contero, “Augmented Reality Experiences in Therapeutic Pedagogy: A Study with Special Needs Students,” in 2016 IEEE 16th International Conference on Advanced Learning Technologies (ICALT) (Austin, TX, USA, 25-28 July 2016). USA: IEEE, 2016, pp. 431-435. doi: 10.1109/ICALT.2016.23.

T. A. Urdan and C. C. Weggen, Corporate e-learning: Exploring a new frontier. San Francisco, USA: WR Hambrecht, 2000.

A. Anand and S. A. C. S. S. Eswaran, “A survey of open source learning management systems,” Annals: Computer Science Series, vol. 16, no. 1, pp. 185-188, 2018.

C. López, F. García-Peñalvo, and P. Pernías, “Desarrollo de Repositorios de Objetos de Aprendizaje a través de la Reutilización de los Metadatos de una Colección Digital: De Dublin Core a IMS,” RED. Revista de Educación a Distancia, vol. IV, no. monográfico II, 2005. [Online]. Available: http://www.um.es/ead/red/M2

L. Castañeda and N. Selwyn, “More than tools? Making sense of the ongoing digitizations of higher education,” International Journal of Educational Technology in Higher Education, vol. 15, no. 1, p. 22, 2018, doi: 10.1186/s41239-018-0109-y.

N. Selwyn, “Minding our language: why education and technology is full of bullshit … and what might be done about it†,” Learning, Media and Technology, vol. 41, no. 3, pp. 437-443, 2016, doi: 10.1080/17439884.2015.1012523.

A. Bartolomé, L. Castañeda, and J. Adell, “Personalisation in educational technology: the absence of underlying pedagogies,” International Journal of Educational Technology in Higher Education, vol. 15, no. 1, 2018, Art no. 14, doi: 10.1186/s41239-018-0095-0.

S. Papert, “Information Technology and Education: Computer Criticism vs. Technocentric Thinking,” Educational Researcher, vol. 16, no. 1, pp. 22- 30, 1987, doi: 10.3102/0013189X016001022.

A. M. Seoane-Pardo, “Formalización de un modelo de formación online basado en el factor humano y la presencia docente mediante un lenguaje de patrón,” PhD, Programa de Doctorado en Formación en la Sociedad del Conocimiento, Universidad de Salamanca, Salamanca, Spain, 2014. [Online]. Available: https://goo.gl/sNrkHu

J. de Souza Zanirato Maia, A. P. Arantes Bueno, and J. R. Sato, “Applications of Artificial Intelligence Models in Educational Analytics and Decision Making: A Systematic Review,” World, vol. 4, no. 2, pp. 288- 313, 2023, doi: 10.3390/world4020019.

D. Amo-Filva, D. Fonseca, F. J. García-Peñalvo, M. Alier-Forment, and M. J. Casany-Guerrero, “Learning Analytics’ Privacy in the Fog and Edge Computing: A Systematic Mapping Review,” in Proceedings TEEM 2022: Tenth International Conference on Technological Ecosystems for Enhancing Multiculturality. Salamanca, Spain, October 19–21, 2022, F. J. GarcíaPeñalvo and A. García-Holgado Eds. Singapore: Springer Nature, 2023, pp. 1199-1207. doi: 10.1007/978-981-99-0942-1_126.

D. Shin, “Embodying algorithms, enactive artificial intelligence and the extended cognition: You can see as much as you know about algorithm,” Journal of Information Science, vol. 49, no. 1, pp. 18-31, 2021, doi: 10.1177/0165551520985495.

T. Wang and E. C. K. Cheng, “An investigation of barriers to Hong Kong K-12 schools incorporating Artificial Intelligence in education,” Computers and Education: Artificial Intelligence, vol. 2, 2021, Art no. 100031, doi: 10.1016/j.caeai.2021.100031.

M. Alier-Forment and F. Llorens-Largo, “Cabalga el Cometa,” in EP31 Las Alucinaciones de ChatGPT con Faraón Llorens, 2023. [Online]. https://bit.ly/3ZCNBVT

F. J. García-Peñalvo, F. Llorens-Largo, and J. Vidal, “The new reality of education in the face of advances in generative artificial intelligence,” RIED: Revista Iberoamericana de Educación a Distancia, vol. 27, no. 1, pp. 9–39, 2024, doi: 10.5944/ried.27.1.37716.

F. J. García-Peñalvo, “The perception of Artificial Intelligence in educational contexts after the launch of ChatGPT: Disruption or Panic?,” Education in the Knowledge Society, vol. 24, 2023, Art no. e31279, doi: 10.14201/eks.31279.

A. Bahrini et al., “ChatGPT: Applications, Opportunities, and Threats,” arXiv, 2023, Art no. arXiv:2304.09103v1, doi: 10.48550/arXiv.2304.09103.

J. Crawford, M. Cowling, and K. A. Allen, “Leadership is needed for ethical ChatGPT: Character, assessment, and learning using artificial intelligence (AI),” Journal of University Teaching and Learning Practice, vol. 20, no. 3, 2023, doi: 10.53761/1.20.3.02.

L. Henrickson and A. Meroño-Peñuela, “Prompting meaning: a hermeneutic approach to optimising prompt engineering with ChatGPT,” AI & SOCIETY, vol. In Press, 2023, doi: 10.1007/s00146-023-01752-8.

A. Nazir and Z. Wang, “A comprehensive survey of ChatGPT: Advancements, applications, prospects, and challenges,” Meta-Radiology, vol. 1, no. 2, 2023, Art no. 100022, doi: 10.1016/j.metrad.2023.100022.

H. H. Thorp, “ChatGPT is fun, but not an author,” Science, vol. 379, no. 6630, p. 313, 2023, doi: 10.1126/science.adg7879.

Y. K. Dwivedi et al., ““So what if ChatGPT wrote it?” Multidisciplinary perspectives on opportunities, challenges and implications of generative conversational AI for research, practice and policy,” International Journal of Information Management, vol. 71, 2023, Art no. 102642, doi: 10.1016/j.ijinfomgt.2023.102642.

A. Iskender, “Holy or Unholy? Interview with Open AI’s ChatGPT,” European Journal of Tourism Research, vol. 34, 2023, Art no. 3414, doi: 10.54055/ejtr.v34i.3169.

E. P. H. Choi, J. J. Lee, M. H. Ho, J. Y. Y. Kwok, and K. Y. W. Lok, “Chatting or cheating? The impacts of ChatGPT and other artificial intelligence language models on nurse education,” Nurse Education Today, vol. 125, 2023, Art no. 105796, doi: 10.1016/j.nedt.2023.105796.

D. Gašević, G. Siemens, and S. Sadiq, “Empowering learners for the age of artificial intelligence,” Computers and Education: Artificial Intelligence, vol. 4, 2023, Art no. 100130, doi: 10.1016/j.caeai.2023.100130.

D. R. E. Cotton, P. A. Cotton, and J. R. Shipway, “Chatting and cheating: Ensuring academic integrity in the era of ChatGPT,” Innovations in Education and Teaching International, vol. In Press, 2023, doi: 10.1080/14703297.2023.2190148.

H. Lee, “The rise of ChatGPT: Exploring its potential in medical education,” Anatomical Sciences Education, vol. In Press, 2023, doi: 10.1002/ase.2270.

OpenAI, “Privacy policy” In: OpenAI, 2023. [Online]. Available from: https://d66z.short.gy/XyWACh

F. Llorens-Largo and F. J. García-Peñalvo, “La inteligencia artificial en el gobierno universitario,” In: Universídad, 2023. [Online]. Available from: https://bit.ly/46SSxbG

W. M. Lim, A. Gunasekara, J. L. Pallant, J. I. Pallant, and E. Pechenkina, “Generative AI and the future of education: Ragnarök or reformation? A paradoxical perspective from management educators,” International Journal of Management Education, vol. 21, no. 2, 2023, Art no. 100790, doi: 10.1016/j.ijme.2023.100790.

T. Wang, Y. Zhang, S. Qi, R. Zhao, Z. Xia, and J. Weng, “Security and Privacy on Generative Data in AIGC: A Survey,” arXiv, 2023, Art no. arXiv:2309.09435v2, doi: 10.48550/arXiv.2309.09435.

M. Alier, M. J. Casañ Guerrero, D. Amo, C. Severance, and D. Fonseca, “Privacy and E-Learning: A Pending Task,” Sustainability, vol. 13, no. 16, doi: 10.3390/su13169206.

E. Sabzalieva and A. Valentini, “ChatGPT and artificial intelligence in higher education: Quick start guide,” UNESCO and UNESCO International Institute for Higher Education in Latin America and the Caribbean (IESALC), Paris, France; Caracas, Venezuela, ED/HE/IESALC/IP/2023/12, 2023. [Online]. Available: https://bit.ly/3oeYm2f

F. Llorens-Largo, J. Vidal, and F. J. García-Peñalvo, “Ya llegó, ya está aquí, y nadie puede esconderse: La inteligencia artificial generativa en educación,” In: Aula Magna 2.0, 2023. [Online]. Available from: https://bit.ly/3tcq5Uh

V. S. Sadasivan, A. Kumar, S. Balasubramanian, W. Wang, and S. Feizi, “Can AI-Generated Text be Reliably Detected?,” arXiv, 2024, Art no. arXiv:2303.11156v3, doi: 10.48550/arXiv.2303.11156.

R. Topinka, “The software says my student cheated using AI. They say they’re innocent. Who do I believe?,” The Guardian, February 13th. [Online]. Available: https://d66z.short.gy/T3vBN5

F. J. García-Peñalvo, “Cómo afecta la inteligencia artificial generativa a los procesos de evaluación,” Cuadernos de Pedagogía, no. 549, 2024.

UNESCO, “Recommendation on the Ethics of Artificial Intelligence,” UNESCO, Paris, France, 2022. [Online]. Available: https://bit.ly/40MCNna

Y. Hu et al., “Artificial Intelligence Security: Threats and Countermeasures,” ACM Computing Surveys, vol. 55, no. 1, 2021, doi: 10.1145/3487890.

S. Khan, “How AI could save (not destroy) education,” In: TED2023, 2023. [Online]. Available from: https://d66z.short.gy/gp6isK

M. Alier, M. J. Casañ, and D. Amo, “Smart Learning Applications: Leveraging LLMs for Contextualized and Ethical Educational Technology,” in Proceedings TEEM 2023: Eleventh International Conference on Technological Ecosystems for Enhancing Multiculturality. Bragança, Portugal, October 25–27, 2023: Springer, 2024.

M. Fernández Enguita, “Inteligencia aumentada y avanzada para aprender y enseñar,” Cuadernos de Pedagogía, no. 549, 2024.

A. García-Holgado, S. Marcos-Pablos, and F. J. García-Peñalvo, “Guidelines for performing Systematic Research Projects Reviews,” International Journal of Interactive Multimedia and Artificial Intelligence, vol. 6, no. 2, pp. 136-144, 2020, doi: 10.9781/ijimai.2020.05.005.

F. J. García-Peñalvo, “Developing robust state-of-the-art reports: Systematic Literature Reviews,” Education in the Knowledge Society, vol. 23, 2022, Art no. e28600, doi: 10.14201/eks.28600.

Downloads

Published

2024-03-01
Metrics
Views/Downloads
  • Abstract
    1529
  • PDF
    1012

How to Cite

Alier, M., García Peñalvo, F. J., and D. Camba, J. (2024). Generative Artificial Intelligence in Education: From Deceptive to Disruptive. International Journal of Interactive Multimedia and Artificial Intelligence, 8(5), 5–14. https://doi.org/10.9781/ijimai.2024.02.011

Most read articles by the same author(s)